Structural and functional hot spots in cytokine receptors.

Int J Hematol

Division of Human Immunology, Hanson Centre for Cancer Research, the Institute of Medical and Veterinary Science, Adelaide, Australia.

Published: April 2001

The activation of cytokine receptors is a stepwise process that depends on their specific interaction with cognate cytokines, the formation of oligomeric receptor complexes, and the initiation of cytoplasmic phosphorylation events. The recent determination of the structure of extracellular domains of several cytokine receptors allows comparison of their cytokine-binding surfaces. This comparison reveals a common structural framework that supports considerable diversity and adaptability of the binding surfaces that determine both the specificity and the orientation of subunits in the active receptor complex. These regions of the cytokine receptors have been targeted for the development of specific agonists and antagonists. The physical coupling of signaling intermediates to the intracellular domains of their receptors plays a major role in determining biological responses to cytokines. In this review, we focus principally on the receptors for cytokines of the granulocyte-macrophage colony-stimulating factor (GM-CSF) family and, where appropriate, compare them with related cytokine receptors. Several paradigms are beginning to emerge that focus on the ability of the extracellular portion of the cytokine receptor to recognize the appropriate cytokine and on a phosphorylated motif in the intracellular region of the GM-CSF receptor that couples to a specific signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02981954DOI Listing

Publication Analysis

Top Keywords

cytokine receptors
20
cytokine
7
receptors
7
structural functional
4
functional hot
4
hot spots
4
spots cytokine
4
receptors activation
4
activation cytokine
4
receptors stepwise
4

Similar Publications

Background: Nemolizumab, a humanized monoclonal antibody against interleukin-31 receptor A (IL-31RA), is used to treat atopic dermatitis and prurigo nodularis. These inflammatory skin diseases affect a wide range of age groups, including pregnant women and children; however, little is known about their biological effects on pre- and postnatal development. Therefore, we report and discuss the results of an enhanced pre- and postnatal development study in cynomolgus monkeys treated with nemolizumab, which also incorporates an assessment of juvenile toxicities.

View Article and Find Full Text PDF

Generation and characterization of OX40-ligand fusion protein that agonizes OX40 on T-Lymphocytes.

Front Immunol

January 2025

Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.

OX40, a member of the tumor necrosis factor (TNF) receptor superfamily, is expressed on the surface of activated T cells. Upon interaction with its cognate ligand, OX40L, OX40 transmits costimulatory signals to antigen-primed T cells, promoting their activation, differentiation, and survivalprocesses essential for the establishment of adaptive immunity. Although the OX40-OX40L interaction has been extensively studied in the context of disease treatment, developing a substitute for the naturally expressed membrane-bound OX40L, particularly a multimerized OX40L trimers, that effectively regulates OX40-driven T cell responses remains a significant challenge.

View Article and Find Full Text PDF

Infant respiratory infections modulate lymphocyte homing to breast milk.

Front Immunol

January 2025

Laboratorio de Pediatria Clinica (LIM36), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil.

Introduction: Chemokines and their receptors are essential for leukocyte migration to several tissues, including human milk. Here, we evaluated the homing of T and B lymphocyte subsets to breast milk in response to ongoing respiratory infections in the nursing infant.

Methods: Blood and mature milk were collected from healthy mothers of nurslings with respiratory infections (Group I) and from healthy mothers of healthy nurslings (Group C).

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD), an X-linked neuromuscular disorder, characterised by progressive immobility, chronic inflammation and premature death, is caused by the loss of the mechano-transducing signalling molecule, dystrophin. In non-contracting cells, such as neurons, dystrophin is likely to have a functional role in synaptic plasticity, anchoring post-synaptic receptors. Dystrophin-expressing hippocampal neurons are key to cognitive functions such as emotions, learning and the consolidation of memories.

View Article and Find Full Text PDF

Background: Immunotherapy is a significant risk factor for severe COVID-19 in multiple myeloma (MM) patients. Understanding how immunotherapies lead to severe COVID-19 is crucial for improving patient outcomes.

Methods: Human protein microarrays were used to examine the expression of 440 protein molecules in MM patients treated with bispecific T-cell engagers (BiTe) (n = 9), anti-CD38 monoclonal antibodies (mAbs) (n = 10), and proteasome inhibitor (PI)-based regimens (n = 10).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!