The mechanism of tissue alteration in chronic pancreatitis (CP) is still unclear. Different hypotheses have been discussed, including increasing oxidant stress in the acinar cells, often as a result of exposure to xenobiotics. To evaluate the role of oxidative stress in CP, the authors investigated the expression of the drug-metabolizing phase II enzyme, glutathione S-transferase-pi (GST-pi), in the pancreatic tissue of patients with CP and compared it with the healthy pancreatic tissue from age-matched donors. Pancreatic tissue from patients with secondary CP resulting from ductal obstruction by pancreatic cancer (PC) was also examined. The percentage of cells immunoreacting with anti-GST-pi was counted within 15 randomly selected islets in each slide of the three groups. In all specimens, ductal and ductular cells, and in PC, cancer cells, expressed GST-pi in a moderate intensity. Acinar cells did not stain. Various numbers of islet cells in each of the three groups were stained strongly. More islet cells expressed GST-pi in CP (42%) than in healthy pancreatic tissue (16%, p < 0.001) or PC (17%, p < 0.001). Our results imply an important role of islet cells in the metabolism of substances, which are the substrate for GST-pi, and lend support to the hypothesis of oxidative stress as the cause of CP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00006676-200105000-00009 | DOI Listing |
PLoS One
January 2025
Faculty of Veterinary Science, Veterinary Clinical Stem Cell and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand.
Potential trend of regenerative treatment for type I diabetes has been introduced for more than a decade. However, the technologies regarding insulin-producing cell (IPC) production and transplantation are still being developed. Here, we propose the potential IPC production protocol employing mouse gingival fibroblast-derived induced pluripotent stem cells (mGF-iPSCs) as a resource and the pre-clinical approved subcutaneous IPC transplantation platform for further clinical confirmation study.
View Article and Find Full Text PDFAbdom Radiol (NY)
January 2025
Samsun University, Samsun, Turkey.
Purpose: Metabolic dysfunction-associated steatotic liver disease (MASLD) and non-alcoholic fatty pancreatic disease (NAFPD) are metabolic diseases with rising incidence. Fatty infiltration may lead to dysfunction of the liver and pancreatic tissues. This study aims to quantify liver and pancreatic fat fractions and examine their correlation with disease severity in acute pancreatitis patients.
View Article and Find Full Text PDFCell Tissue Res
January 2025
Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation (QF), Hamad Bin Khalifa University (HBKU), Doha, Qatar.
Impaired insulin secretion contributes to the pathogenesis of type 1 diabetes mellitus through autoimmune destruction of pancreatic β-cells and the pathogenesis of severe forms of type 2 diabetes mellitus through β-cell dedifferentiation and other mechanisms. Replenishment of malfunctioning β-cells via islet transplantation has the potential to induce long-term glycemic control in the body. However, this treatment option cannot widely be implemented in clinical due to healthy islet donor shortage.
View Article and Find Full Text PDFGut Microbes
December 2025
Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Ischemia-reperfusion injury (IRI) is a major obstacle in liver transplantation, especially with steatotic donor livers. Dysbiosis of the gut microbiota has been implicated in modulating IRI, and plays a pivotal role in regulating host inflammatory and immune responses, but its specific role in liver transplantation IRI remains unclear. This study explores whether can mitigate IRI and its underlying mechanisms.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Background: Damage-associated molecular patterns (DAMPs) induced by immunogenic cell death (ICD) may be useful for the immunotherapy to patients undergoing pancreatic ductal adenocarcinoma (PDAC). The aim of this study is to predict the prognosis and immunotherapy responsiveness of PDAC patients using DAMPs-related genes.
Methods: K-means analysis was used to identify the DAMPs-related subtypes of 175 PDAC cases.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!