Dominant-lethal effects of 6-mercaptopurine on male mice were studied using eight doses, ranging from 150 to 482 mg/kg. Effects of the 150-mg/kg dose were studied over the entire spermatogenic cycle, and those of the higher doses for matings made between days 28.5 and 41.5 after treatment. It was found that, with low doses, there was only one period in which clearcut increases in induced dominant-lethal mutations were detected, namely in matings that occurred 32.5 to 35.5 days after treatment. With higher doses, effects could be detected beyond that period through day 39.5. Spermatozoa utilized for matings during the period of greatest response were presumably derived from germ cells that were in late differentiating spermatogonial and early meiotic spermatocyte stages at the time of treatment. These results are similar to those of Ray and Hyneck. To date, 6-mercaptopurine is unique in inducing dominant lethality only at these particular stages. A study of chromatid aberration induction in the treated males themselves was carried out for 150 and 250 mg/kg doses of 6-mercaptopurine over the period of 9 to 16 days after treatment. A considerable increase in ischromatid and chromatid deletions was observed in diakinesis-metaphase-I spermatocytes on days 14 and 15 after treatment. For reasons discussed, the cells sampled at this may be assumed to have been in early meiosis (preleptotene), with some in late differentiating spermatogonial stages, at the time of treatment. The rough agreement in sensitive cell type for dominant lethality and chromatid aberration induction suggests that chromatid deletions are the cause of dominant lethality in this study. Conservative estimates of the frequency of dominant lethality expected from the chromatid aberration frequencies tend to substantiate this suggestion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0027-5107(75)90237-7 | DOI Listing |
Molnupiravir is an antiviral medicine that induces lethal copying errors during SARS-CoV-2 RNA replication. Molnupiravir reduced hospitalization in one pivotal trial by 50% and had variable effects on reducing viral RNA levels in three separate trials. We used mathematical models to simulate these trials and closely recapitulated their virologic outcomes.
View Article and Find Full Text PDFUnlabelled: Bacterial genomic mutations in have been detected in isolated resistant clinical strains, yet their mechanistic effect on the development of antimicrobial resistance remains unclear. The resistance-associated regulatory systems acquire adaptive mutations under stress conditions that may lead to a gain of function effect and contribute to the resistance phenotype. Here, we investigate the effect of a single-point mutation (T331I) in VraS histidine kinase, part of the VraSR two-component system in VraSR senses and responds to environmental stress signals by upregulating gene expression for cell wall synthesis.
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA.
is a fungal pathogen that can cause lethal disease in immunocompromised patients. Immunocompetent host immune responses, such as formation of pulmonary granulomas, control the infection and prevent disseminated disease. Little is known about the immunological conditions establishing the latent infection granuloma in the lungs.
View Article and Find Full Text PDFBiomaterials
January 2025
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, China. Electronic address:
Metastasis as the hallmark of cancer preferentially contributes to tumor recurrence and therapy resistance, aggrandizing the lethality of patients with cancer. Despite their robust suppressions of tumor progression, chemotherapeutics failed to attenuate cancer cell migration and even triggered pro-metastatic effects. In parallel, protease-activated receptor 2 (PAR2), a member of the G protein-coupled receptor subfamily, actively participates in cancer metastasis via multiple signal transduction pathways.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Immunology, Faculty of Medicine, Comenius University Bratislava, 813 72 Bratislava, Slovakia.
Gliomas are the most common and lethal forms of malignant brain tumors. We attempted to identify the role of the aging-suppressor gene and Klotho protein in the immunopathogenesis of gliomas. We examined genetic variants by PCR-RFLP and measured serum Klotho levels using the ELISA method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!