MEKK2 and MEKK3 are mitogen-activated protein kinase kinase kinases (MAP3 kinases) of 70 and 71 kDa respectively that are markedly homologous (94%) in their kinase domains. Both MEKK2 and MEKK3 are able to activate the Jun kinase pathway in vivo. However, following routine immunoprecipitation in Triton X-100, MEKK2 but not MEKK3 is able to effectively phosphorylate both SEK-1 and MEK-1 and to undergo autophosphorylation. Unexpectedly, both MEKK2 and MEKK3 are functional in an in vitro kinase assay when cells are solubilized with the closely related detergent, NP-40. Given the high homology between these kinases, we set out to relate this differential sensitivity to Triton X-100 to differences in primary structure. A set of chimeric molecules were generated and the loss of activity in Triton X-100 mapped to kinase domain II/III and specifically to serine 390 of MEKK3 and valine 384 of MEKK2, residues immediately N-terminal to the active site lysine. Mutation of serine 390 of MEKK3 to a valine (as is found in MEKK2) conferred catalytic activity to MEKK3 in Triton X-100 whereas the reciprocal alteration of valine 384 of MEKK2 to a serine conferred lack of activity in Triton X-100 to MEKK2. Search of the protein database identified only three kinases, MEKK3, Pbs2p and Dd-PKI, with a serine or threonine at this site. The presence of a serine or threonine adjacent to the active site lysine in protein kinases is rare and, in MEKK3, results in detergent instability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0167-4838(01)00183-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!