The studies reported in this communication had two major objectives: first to validate the in-house developed SCGE-Pro: a software developed for automated image analysis and data processing for Comet assay using human peripheral blood leucocytes exposed to radiation doses, viz. 2, 4 and 8 Gy, which are known to produce DNA/chromosome damage using alkaline Comet assay. The second objective was to investigate the effect of gamma radiation on DNA damage in mouse peripheral blood leucocytes using identical doses and experimental conditions, e.g. lyses, electrophoretic conditions and duration of electrophoresis which are known to affect tail moment (TM) and tail length (TL) of comets. Human and mouse whole blood samples were irradiated with different doses of gamma rays, e.g. 2, 4 and 8 Gy at a dose rate of 0.668Gy/min between 0 and 4 degrees C in air. After lyses, cells were electrophorased under alkaline conditions at pH 13, washed and stained with propidium iodide. Images of the cells were acquired and analyzed using in-house developed imaging software, SCGE-Pro, for Comet assay. For each comet, total fluorescence, tail fluorescence and tail length were measured. Increase in TM and TL was considered as the criteria of DNA damage. Analysis of data revealed heterogeneity in the response of leucocytes to gamma ray induced DNA damage both in human as well as in mouse. A wide variation in TM and TL was observed in control and irradiated groups of all the three donors. Data were analyzed for statistical significance using one-way ANOVA. Though a small variation in basal level of TM and TL was observed amongst human and mouse controls, the differences were not statistically significant. A dose-dependent increase in TM (P<0.001) and TL (P<0.001) was obtained at all the radiation doses (2-8 Gy) both in human and mouse leucocytes. However, there was a difference in the nature of dose response curves for human and mouse leucocytes. In human leucocytes, a linear increase in TM and TL was observed up to the highest radiation dose of 8 Gy. However, in case of mouse leucocytes, a sharp increase in TM and TL was observed only up to 4 Gy, and there after saturation ensued. In human samples, the dose response of both TM and TL showed best fits with linear model (r(TM)=0.999 and r(TL)=0.999), where as in mouse, the best fit was obtained with Sigmoid (Boltzman) model. From the present data on leucocytes with increase in TM and TL as the criteria of DNA damage, it appears that mouse is relatively more sensitive to radiation damage than humans.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1383-5718(00)00166-2DOI Listing

Publication Analysis

Top Keywords

dna damage
16
comet assay
16
human mouse
12
analysis data
12
gamma ray
8
ray induced
8
induced dna
8
damage human
8
scge-pro software
8
software developed
8

Similar Publications

Prostate cancer presents a major health issue, with its progression influenced by intricate molecular factors. Notably, the interplay between miRNAs and changes in transcriptomic patterns is not fully understood. Our study seeks to bridge this knowledge gap, employing computational techniques to explore how miRNAs and transcriptomic alterations jointly regulate the development of prostate cancer.

View Article and Find Full Text PDF

Cadmium Pollution Deteriorates the Muscle Quality of Labeo rohita by Altering Its Nutrients and Intestinal Microbiota Diversity.

Biol Trace Elem Res

January 2025

Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China.

The detrimental effects of cadmium (Cd), a hazardous heavy metal, on fish have triggered global concerns. While the ecotoxicity of Cd on fish has been investigated, the impact of Cd on muscle quality and its correlation with the gut microbiota in fish remains scarce. To comprehensively uncover Cd effects based on preliminary muscle Cd deposition, relevant studies, and ecological Cd pollution data, we exposed Labeo rohita to Cd under concentrations of 0.

View Article and Find Full Text PDF

Formamidopyrimidine DNA glycosylase (Fpg) and flap endonuclease 1 (FEN1) are essential to sustaining genomic stability and integrity, while the abnormal activities of Fpg and FEN1 may lead to various diseases and cancers. The development of simple methods for simultaneously monitoring Fpg and FEN1 is highly desirable. Herein, we construct a multiple cyclic ligation-promoted exponential recombinase polymerase amplification (RPA) platform for sensitive and simultaneous monitoring of Fpg and FEN1 in cells and clinical tissues.

View Article and Find Full Text PDF

Grainyhead-like protein 3 homolog (GRHL3) has been identified as a top transcription factor associated with keratinization in lung squamous cell carcinoma (LUSC). We designed this study to elucidate the function of GRHL3 in radioresistance in LUSC and the mechanism involved. Transcriptome differences between radioresistant and parental cells were analyzed to identify the hub transcription factor.

View Article and Find Full Text PDF

A potentially promising approach to targeted cancer prevention in genetically at-risk populations is the pharmacological upregulation of DNA repair pathways. SMUG1 is a base excision repair enzyme that ameliorates adverse genotoxic and mutagenic effects of hydrolytic and oxidative damage to pyrimidines. Here we describe the discovery and initial cellular activity of a small-molecule activator of SMUG1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!