Our initial studies of hydrogen-deuterium (H-D) exchange of tryptophan 109 in Escherichia coli alkaline phosphatase (AP) suggested that significant local unfolding of the protein might occur to allow for the exchange reaction, which is very slow at room temperature (Fischer et al., Biochemistry 39 (2000) 1455-1461). In order to investigate whether the partial unfolding and/or 'breathing' motions leading to H-D exchange were part of the unfolding pathway of the protein we prepared a series of mutants, designed to produce cavities around the exchanging residue, and compared their rates of H-D exchange to their lability (rate of inactivation) in guanidine hydrochloride (Gd:HCl). The complex unfolding kinetics of the mutants in the presence of Gd:HCl showed several components with rates that differed substantially among these proteins, but none of the rates of denaturation induced with Gd:HCl was consistently correlated with the H-D exchange rates. We conclude that the partial opening of the AP structure during the H-D exchange of tryptophan 109, although very slow, is not a rate determining step in the unfolding of this protein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0167-4838(00)00266-1 | DOI Listing |
Dalton Trans
January 2025
Laboratory of Catalysis, Polymerization, Processes and Materials (CP2 M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
Metal-catalyzed hydrogen isotope exchange (HIE) has become a valuable method for incorporating deuterium and tritium into organic molecules, with applications in a wide range of scientific fields. This study explores the role of transition metal cooperativity in enhancing catalytic hydrogen/deuterium (H/D) exchange using early-late heterobimetallic polyhydride (ELHB) complexes. A series of four ELHB complexes, of general formula [M(CHBu)(H)M'Cp*], combining early transition metals (M = Hf, Ta) with late metals (M' = Ir, Os), were synthesized and evaluated for their catalytic activity in HIE of (hetero)arenes.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States.
An inherent strength of hydrogen/deuterium exchange coupled to mass spectrometry (HDX-MS) is its ability to detect the presence of multiple conformational states of a protein, which often manifest as multimodal isotopic envelopes. However, the statistical considerations for accurate analysis of multimodal spectra have yet to be established. Here we outline an unrestrained binomial distribution fitting approach with the corresponding statistical tests to accurately detect and, when possible, deconvolute isotopic distributions that contain multiple subpopulations.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States.
A Pt(II) aqua complex supported by mesoporous silica nanoparticle (MSN)-immobilized sulfonated CNN pincer ligand featuring a rigid SiO tether was prepared. This hybrid material was tested as a catalyst in H/D exchange reactions of C(sp)-H bonds of selected aromatic substrates and DO-2,2,2-trifluoroethanol- (TFE-) mixtures or CDCOD acting as a source of exchangeable deuterium. The catalyst immobilization served as a means to not only enable the catalyst's recyclability but also minimize the coordination of sulfonate groups and the metal centers originating from different catalyst's moieties that would preserve reactive Pt(OH) fragments needed for catalytic C-H bond activation.
View Article and Find Full Text PDFChemphyschem
January 2025
Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt, Germany.
The light-sensing activity of phytochromes is based on the reversible light-induced switching between two isomerization states of the bilin chromophore. These photo-transformations may not necessarily be only unidirectional, but could potentially branch back to the initial ground state in a thermally driven process termed shunt. Such shunts have been rarely reported, and thus our understanding of this process and its governing factors are limited.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
The reaction coefficient for hydrogen/deuterium (H/D) exchange and the diffusion of hydrated excess protons within amorphous solid water (ASW) are characterized as a function of temperature. For these experiments, water films are deposited on a Pt(111) substrate at 108 K, and reactions with pre-adsorbed hydrogen atoms produce hydrated protons. Upon heating, protons diffuse within the water, and H/D exchange occurs when they encounter D2O probe molecules deposited in the films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!