The antioxidant, antimutagenic and anticarcinogenic activities of green tea and its polyphenols have been reported. As bioactivation of the precarcinogens and detoxification of ultimate carcinogens are mainly carried out by hepatic metabolizing enzymes, we have investigated the modulation of these enzyme activities subsequent to tea consumption in rats. Female Wistar rats were divided into eight groups (n = 5). Six groups were given aqueous solutions (2%, w/v) of six different teas (New Zealand green tea, Australian green tea, Java green tea, Dragon green tea, Gunpowder green tea or English Breakfast black tea) as the sole source of fluid. One group was given a standard green tea extract (0.5%, w/v) while the control group had free access to water. At the end of four-weeks treatment, different cytochrome P450 (CYP) isoform and phase II enzyme activities were determined by incubation of the liver microsomes or cytosols with appropriate substrates. CYP 1A2 activity was markedly increased in all the tea treatment groups (P < 0.05). CYP 1A1 activity was increased significantly in most of the groups except for the Madura, Gunpowder, and Java green tea-treatment groups. Cytosolic glutathione-S-transferase activity was significantly increased (P< 0.05) in the New Zealand, Gunpowder, and Java green tea-treatment groups. The microsomal UDP-glucuronosyl transferase activity remained unchanged or was moderately increased in most of the groups. The balance between the phase I carcinogen-activating enzymes and the phase II detoxifying enzymes could be important in determining the risk of developing chemically-induced cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1211/0022357011775695 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!