The safety and feasibility of magnetic resonance imaging (MRI) in patients with cardiac pacemakers is an issue of gaining significance. The effect of MRI on patients' pacemaker systems has only been analyzed retrospectively in some case reports. Therefore, this study prospectively investigated if MRI causes irreversible changes in patients' pacemaker systems. The effect of MRI at 0.5 Tesla on sensing and stimulation thresholds, lead impedance and battery voltage, current, and impedance was estimated during 34 MRI examinations in 32 patients with implanted pacemakers. After measurements at baseline and with documentation of intrinsic rhythm and modification of the pacing mode, patients underwent MRI. The rest of the function time of the pacemaker was calculated. Measurements were again performed after 99.5 +/- 29.6 minutes (mean +/- SD), immediately after MRI examination, and 3 months later. Lead impedance and sensing and stimulation thresholds did not change after MRI. Battery voltage decreased immediately after MRI and recovered 3 months later. Battery current and impedance tended to increase. The calculated rest of function time did not change immediately after MRI. MRI affected neither pacemaker programmed data, nor the ability to interrogate, program, or use telemetry. Surprisingly, in the gantry of the scanner, temporary deactivation of the reed switch occurred in 12 of 32 patients when positioned in the center of the magnetic field. Missing activation of the reed switch through the static magnetic field at 0.5 Tesla is not unusual. MRI at 0.5 Tesla does not cause irreversible changes in patients' pacemaker systems.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1460-9592.2001.00489.xDOI Listing

Publication Analysis

Top Keywords

irreversible changes
12
mri
12
patients' pacemaker
12
pacemaker systems
12
cardiac pacemakers
8
magnetic resonance
8
resonance imaging
8
changes patients'
8
mri tesla
8
sensing stimulation
8

Similar Publications

To satisfy the needs of the current technological world that demands high performance and efficiency, a deep understanding of the whole fabrication process of electronic devices based on low-dimensional materials is necessary for rapid prototyping of devices. The fabrication processes of such nanoscale devices often include exposure to an electron beam. A field effect transistor (FET) is a core device in current computation technology, and FET configuration is also commonly used for extraction of electronic properties of low-dimensional materials.

View Article and Find Full Text PDF

Neurovascular unit impairment in iron deficiency anemia.

Neuroscience

December 2024

Departamento de Neurobiología y Neuropatología, IIBCE, MEC, Montevideo, Uruguay. Electronic address:

Iron is one of the crucial elements for CNS development and function and its deficiency (ID) is the most common worldwide nutrient deficit in the world. Iron deficiency anemia (IDA) in pregnant women and infants is a worldwide health problem due to its high prevalence and its irreversible long-lasting effects on brain development. Even with iron supplementation, IDA during pregnancy and/or breastfeeding can result in irreversible cognitive, motor, and behavioral impairments.

View Article and Find Full Text PDF

Recovery Following Recurrent Fires Across Mediterranean Ecosystems.

Glob Chang Biol

December 2024

Faculdade de Ciências, Instituto Dom Luiz, Universidade de Lisboa, Lisbon, Portugal.

In fire-prone regions such as the Mediterranean biome, fire seasons are becoming longer, and fires are becoming more frequent and severe. Post-fire recovery dynamics is a key component of ecosystem resilience and stability. Even though Mediterranean ecosystems can tolerate high exposure to extreme temperatures and recover from fire, changes in climate conditions and fire intensity or frequency might contribute to loss of ecosystem resilience and increase the potential for irreversible changes in vegetation communities.

View Article and Find Full Text PDF

Controllable reconstruction of lignified biomass with molecular scissors to form carbon frameworks for highly stable Li metal batteries.

Chem Sci

December 2024

Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China

Lithium metal batteries (LMBs) promise high-energy-density storage but face safety issues due to dendrite-induced lithium deposition, irreversible electrolyte consumption, and large volume changes, which hinder their practical applications. To address these issues, tuning lithium deposition by structuring a host for the lithium metal anode has been recognized as an efficient method. Herein, we report a supercritical water molecular scissor-controlled strategy to form a carbon framework derived from biomass wood.

View Article and Find Full Text PDF

Neuropathological features of cerebrovascular diseases.

Pathology

November 2024

Institutionen för kliniska vetenskaper, Lunds Universitet, Klinisk Patologi & Medicinsk Service, Region Skåne, Lund, Sweden.

Optimal blood flow through a patent cerebral circulation is critical for supply of oxygen and nutrients for brain function. The integrity of vascular elements within arterial vessels of any calibre can be compromised by various disease processes. Pathological changes in the walls of veins and the venous system may also alter the dynamics of cerebral perfusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!