Computational techniques are widely used for studying large artery hemodynamics. Current trends favor analyzing flow in more anatomically realistic arteries. A significant obstacle to such analyses is generation of computational meshes that accurately resolve both the complex geometry and the physiologically relevant flow features. Here we examine, for a single arterial geometry, how velocity and wall shear stress patterns depend on mesh characteristics. A well-validated Navier-Stokes solver was used to simulate flow in an anatomically realistic human right coronary artery (RCA) using unstructured high-order tetrahedral finite element meshes. Velocities, wall shear stresses (WSS), and wall shear stress gradients were computed on a conventional "high-resolution" mesh series (60,000 to 160,000 velocity nodes) generated with a commercial meshing package. Similar calculations were then performed in a series of meshes generated through an adaptive mesh refinement (AMR) methodology. Mesh-independent velocity fields were not very difficult to obtain for both the conventional and adaptive mesh series. However, wall shear stress fields, and, in particular, wall shear stress gradient fields, were much more difficult to accurately resolve. The conventional (nonadaptive) mesh series did not show a consistent trend towards mesh-independence of WSS results. For the adaptive series, it required approximately 190,000 velocity nodes to reach an r.m.s. error in normalized WSS of less than 10 percent. Achieving mesh-independence in computed WSS fields requires a surprisingly large number of nodes, and is best approached through a systematic solution-adaptive mesh refinement technique. Calculations of WSS, and particularly WSS gradients, show appreciable errors even on meshes that appear to produce mesh-independent velocity fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1115/1.1351807 | DOI Listing |
In Vitro Model
April 2022
Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Québec, Division of Regenerative Medicine, Laval University, Québec, QC G1V 0A6 Canada.
The mechanical stimulation applied on engineered vascular constructs in perfusion bioreactors has been shown to be beneficial for their maturation. The level of mechanical stimulation applied on these constructs depends on the flow parameters of the circuit (e.g.
View Article and Find Full Text PDFCardiovasc Eng Technol
January 2025
Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 1-3, Budapest, 1111, Hungary.
Purpose: The initiation of intracranial aneurysms has long been studied, mainly by the evaluation of the wall shear stress field. However, the debate about the emergence of hemodynamic stimuli still persists. This paper builds on our previous hypothesis that secondary flows play an important role in the formation cascade by examining the relationship between flow physics and vessel geometry.
View Article and Find Full Text PDFInt J Cardiovasc Imaging
January 2025
Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
Innovations (Phila)
December 2024
Department of Neurosciences and Rehabilitation, Cardiac Surgery Unit, University of Ferrara, Italy.
Objective: Both the en bloc island technique and the branched graft technique (BGT) present advantages but also limitations in aortic arch surgery. Here is the first presentation of an innovative prosthesis for aortic arch replacement, conceived to overcome the disadvantages of both techniques.
Methods: The novel ISLAND graft is a tubular Dacron or hybrid prosthesis with an additional extended Dacron graft ("bubble") on the superior aspect, for en bloc island graft anastomosis.
Sci Rep
January 2025
Mechanical Engineering, Carnegie Mellon University, Pittsburgh, 15213, USA.
Local hemodynamics play an essential role in the initiation and progression of coronary artery disease. While vascular geometry alters local hemodynamics, the relationship between vascular structure and hemodynamics is poorly understood. Previous computational fluid dynamics (CFD) studies have explored how anatomy influences plaque-promoting hemodynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!