Sequential amino acid exchange across b(0,+)-like system in chicken brush border jejunum.

J Membr Biol

Departament de Fisiologia-Divisió IV, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain.

Published: April 2001

In the small intestine, cationic amino acids are transported by y(+)-like and b(0,+)-like systems present in the luminal side of the epithelium. Here, we report the characterization of a b(0,+)-like system in the apical membrane of the chicken jejunum, and its properties as an amino acid exchanger. Analysis of the brush border membrane by Western blot points out the presence of rBAT (protein related to b0,+ amino acid transport system) in these membranes. A functional mechanism for amino acid exchange across this system was established by kinetic analysis measuring fluxes at varying substrate concentrations both in internal (in) and external (out) vesicle compartments. This intestinal b(0,+)-like system functions for L-arginine as an obligatory exchanger since its transport capacity increases 100-200 fold in exchange conditions, thus suggesting an important role in the intestinal absorption of cationic amino acids. The kinetic analysis of Argin efflux velocities is compatible with the formation of a ternary complex and excludes a model involving a ping-pong mechanism. The binding affinity of Argout is higher than that of Argin, suggesting a possible order of binding (Argout first) for the formation of the ternary complex during the exchange cycle. A model of double translocation pathways with alternating access is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s002320010072DOI Listing

Publication Analysis

Top Keywords

amino acid
16
b0+-like system
12
acid exchange
8
brush border
8
cationic amino
8
amino acids
8
kinetic analysis
8
formation ternary
8
ternary complex
8
system
5

Similar Publications

BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories.

J Chem Inf Model

January 2025

Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1218 S 5th Ave, Monrovia, California 91016, United States.

Bayesian network modeling (BN modeling, or BNM) is an interpretable machine learning method for constructing probabilistic graphical models from the data. In recent years, it has been extensively applied to diverse types of biomedical data sets. Concurrently, our ability to perform long-time scale molecular dynamics (MD) simulations on proteins and other materials has increased exponentially.

View Article and Find Full Text PDF

β-Addition products are common in conjugate addition reactions consisting of α,β-unsaturated carbonyl compounds. Here, we are reporting an uncommon α-addition product as a major product in the thioacetic acid conjugate addition reaction on a peptide consisting of ()-α,β-unsaturated γ-amino acids. In addition, we observed highly diastereoselective β-addition products from the thiophenol and thioethanol conjugate addition reaction on peptides.

View Article and Find Full Text PDF

[Nephrology : what's new in 2024 (II)].

Rev Med Suisse

January 2025

Service de néphrologie, Département de médecine, Hôpitaux universitaires de Genève, Genève 14.

Certain molecules, such as GLP-1 agonists and endothelin antagonists, possess nephroprotective properties. When treating IgA nephropathy, endothelin antagonists and sibeprenlimab have shown effectiveness in slowing the progression of chronic kidney isease. Additionally, the infusion of amino acids can reduce the incidence of mild acute kidney injury following cardiac surgery.

View Article and Find Full Text PDF

Dissecting AlphaFold2's capabilities with limited sequence information.

Bioinform Adv

November 2024

Institute of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland.

Summary: Protein structure prediction aims to infer a protein's three-dimensional (3D) structure from its amino acid sequence. Protein structure is pivotal for elucidating protein functions, interactions, and driving biotechnological innovation. The deep learning model AlphaFold2, has revolutionized this field by leveraging phylogenetic information from multiple sequence alignments (MSAs) to achieve remarkable accuracy in protein structure prediction.

View Article and Find Full Text PDF

Background: Branched-chain amino acids (BCAAs) are widely used as sports nutrition supplements. However, their impact on the rate of force development (RFD), an indicator of explosive muscle strength, has not yet been validated. This study aimed to assess the impact of BCAA supplementation on the RFD in college basketball players during simulated games.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!