[18F]fluoroestradiol radiation dosimetry in human PET studies.

J Nucl Med

Departments of Radiology and Medical Oncology, University of Washington School of Medicine, Seattle, Washington 98195, USA.

Published: April 2001

Unlabelled: [18F]16alpha-fluoroestradiol (FES) is a PET imaging agent useful for the study of estrogen receptors in breast cancer. We estimated the radiation dosimetry for this tracer using data obtained in patient studies.

Methods: Time-dependent tissue concentrations of radioactivity were determined from blood samples and PET images in 49 patients (52 studies) after intravenous injection of FES. Radiation absorbed doses were calculated using the procedures of the MIRD committee, taking into account the variation in dose based on the distribution of activities observed in the individual patients. Effective dose equivalent was calculated using International Commission on Radiological Protection Publication 60 weights for the standard woman.

Results: The effective dose equivalent was 0.022 mSv/MBq (80 mrem/mCi). The organ that received the highest dose was the liver (0.13 mGy/MBq [470 mrad/mCi]), followed by the gallbladder (0.10 mGy/MBq [380 mrad/mCi]) and the urinary bladder (0.05 mGy/MBq [190 mrad/mCi]).

Conclusion: The organ doses are comparable to those associated with other commonly performed nuclear medicine tests. FES is a useful estrogen receptor-imaging agent, and the potential radiation risks associated with this study are well within accepted limits.

Download full-text PDF

Source

Publication Analysis

Top Keywords

radiation dosimetry
8
effective dose
8
dose equivalent
8
[18f]fluoroestradiol radiation
4
dosimetry human
4
human pet
4
pet studies
4
studies unlabelled
4
unlabelled [18f]16alpha-fluoroestradiol
4
[18f]16alpha-fluoroestradiol fes
4

Similar Publications

Dosimetric Planning Comparison for Left Ventricle Avoidance in Non-small Cell Lung Cancer Radiotherapy.

Cureus

December 2024

Physics and Engineering, London Regional Cancer Program, London, CAN.

Introduction: Radiation may unintentionally injure myocardial tissue, potentially leading to radiation-induced cardiac disease (RICD), with the net benefit of non-small cell lung cancer (NSCLC) radiotherapy (RT) due to the proximity of the lung and heart. RTOG-0617 showed a greater reduction in overall survival (OS) comparing higher doses to standard radiation doses in NSCLC RT. VHeart has been reported as an OS predictor in the first- and fifth-year follow-ups.

View Article and Find Full Text PDF

Purpose: This study evaluated beam quality and radiation dosimetry of a CT scanner equipped with a novel detector and filtration technology called PureVision Optics (PVO). PVO features miniaturized electronics, a detector cut with microblade technology, and increased filtration in order to increase x-ray detection and reduce image noise.

Methods: We assessed the performance of two similar 320-detector CT scanners: one equipped with PVO and one without.

View Article and Find Full Text PDF

Ra, Th, and K levels in various foods frequently consumed by Egyptians were determined using a gamma-ray spectrometer based on the germanium detector (HPGe). Activity concentrations of Ra, Th, and K were in the range of < 0.10 to 0.

View Article and Find Full Text PDF

H*10 neutron dosimetry (unlike gamma dosimetry), requires consideration of neutron energy spectra due to the 20× variation of the weight factor over the thermal-to-fast energy range, as well as the neutron radiation field dose rates ranging from cosmic, ~.01 μSv h-1 levels to commonly encountered ~10-200 μSv h-1 in nuclear laboratories/processing plants, and upwards of 104 Sv h-1 in nuclear reactor environments. This paper discusses the outcome of the comparison of spectrum-weighted neutron dosimetry covering thermal-to-fast energy using the novel H*-TMFD spectroscopy-enabled sensor system in comparison with measurements using state-of-the-art neutron dosimetry systems at SRNS-Rotating Spectrometer (ROSPEC), and non-spectroscopic Eberline ASP2E ("Eberline") and Ludlum 42-49B ("Ludlum") survey instrumentation.

View Article and Find Full Text PDF

Purpose: Bodyweight loss is commonly found in Nasopharyngeal Carcinoma patients during Concurrent Chemo-radiotherapy (CCRT) and has implications for treatment decisions. However, the prognostic value of this weight loss remains uncertain. We addressed it by proposing a novel index Weight Censorial Score (WCS) that characterizes the patient-specific CCRT response on actual to estimated weight loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!