The immunogenic envelope antigen gp35-37 of human herpesvirus-8 (HHV-8) is encoded by orfK8.1. An ELISA is described using streptavidin capture of bacterially expressed and biotinylated recombinant K8.1 antigen. The antigen capture strategy provides a simple and reliable method, which does not require high yield production and purification of the recombinant antigen before the serological assay. The specificity and sensitivity of the K8.1 ELISA were validated by gp35-37 envelope antigen Western blot and anti-lytic membrane immunofluorescence assay using lytically induced HHV-8 infected BCBL-1 cells. Under the established ELISA conditions, eight of the 10 Kaposi's sarcoma patients and five of the 180 healthy blood donors had IgG antibodies to K8.1 envelope antigen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0166-0934(01)00289-0 | DOI Listing |
mBio
January 2025
Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA.
The 55-carbon isoprenoid, undecaprenyl-phosphate (UndP), is a universal carrier lipid that ferries most glycans and glycopolymers across the cytoplasmic membrane in bacteria. In addition to peptidoglycan precursors, UndP transports O-antigen, capsule, wall teichoic acids, and sugar modifications. How this shared but limited lipid is distributed among competing pathways is just beginning to be elucidated.
View Article and Find Full Text PDFVirus Res
January 2025
Medical Research Center, Yuebei People's Hospital, Shantou University Medical College, 512025, Shaoguan, China; Shenzhen Immuthy Biotech Co., Ltd, 518107, Shenzhen, Guangdong, China. Electronic address:
Hepatitis B virus (HBV) represents one of the major pathogenic factor that leads to chronic liver diseases and the development of hepatocellular carcinoma (HCC). The currently approved anti-HBV drugs cannot eradicate the virus or block the development of HCC. HBV nucleocapsid consists of the hepatitis B core antigen (HBcAg) and the HBV relaxed-circular partially double-stranded DNA (rcDNA), indispensable in virus replication.
View Article and Find Full Text PDFViruses
January 2025
Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea.
Self-assembling ferritin nanoparticle technology is a widely used vaccine development platform for enhancing the efficacy of subunit vaccines by displaying multiple antigens on nanocages. The dengue virus (DENV) envelope domain III (EDIII) protein, the most promising antigen for DENV, has been applied in vaccine development, and it is essential to evaluate the relative immunogenicity of the EDIII protein and EDIII-conjugated ferritin to show the efficiency of the ferritin delivery system compared with EDIII. In this study, we optimized the conditions for the expression of the EDIII protein in , protein purification, and refolding, and these optimization techniques were applied for the purification of EDIII ferritin nanoparticles.
View Article and Find Full Text PDFViruses
January 2025
Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
Microvirin is a lectin molecule known to have monovalent interaction with glycoprotein gp120. A previously reported high-resolution structural analysis defines the mannobiose-binding cavity of Microvirin. Nonetheless, structure does not directly define the energetics of binding contributions of protein contact residues.
View Article and Find Full Text PDFParasit Vectors
January 2025
College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.
Background: Tamdy virus (TAMV) was first isolated in Uzbekistan and Turkmenistan. In 2018, it was found in China, marking its entry into the molecular research era. TAMV is linked to febrile diseases, but its epidemiology and spillover risks are poorly understood, necessitating urgent molecular research and detection method development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!