Porphycenes are electronic isomers of porphyrins which, when neutral, display no appreciable photosensitizing action towards Gram-negative bacteria. The covalent binding of oligomeric polylysine moieties, which are cationic at physiological pH values, endows porphycenes with a significant phototoxic activity against Gram-negative bacteria while retaining their photoefficiency against a variety of microbial pathogens, including Gram-positive bacteria, fungi and mycoplasmas. The effect of the polylysine moiety is dependent on both the polylysine concentration and the degree of oligomerization. A suitable interplay among the various parameters opens the possibility to obtain either a broad spectrum of antimicrobial activity or a selective action toward a specific pathogen while minimizing the damage to human fibroblasts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1011-1344(01)00114-2DOI Listing

Publication Analysis

Top Keywords

microbial pathogens
8
gram-negative bacteria
8
polylysine-porphycene conjugates
4
conjugates efficient
4
efficient photosensitizers
4
photosensitizers inactivation
4
inactivation microbial
4
pathogens porphycenes
4
porphycenes electronic
4
electronic isomers
4

Similar Publications

Climate change is having unprecedented impacts on human health, including increasing infectious disease risk. Despite this, health systems across the world are currently not prepared for novel disease scenarios anticipated with climate change. While the need for health systems to develop climate change adaptation strategies has been stressed in the past, there is no clear consensus on how this can be achieved, especially in rural areas in low- and middle-income countries that experience high disease burdens and climate change impacts simultaneously.

View Article and Find Full Text PDF

Human adenovirus type 36 (HAdV-D36) has been putatively linked to obesity in animals and has been associated with obesity in humans in some but not all studies. Despite extensive epidemiological research there is limited information about its receptor profile. We investigated the receptor portfolio of HAdV-D36 using a combined structural biology and virology approach.

View Article and Find Full Text PDF

Genomic data on from the African continent are currently lacking, resulting in the region being under-represented in global analyses of infection (CDI) epidemiology. For the first time in Nigeria, we utilized whole-genome sequencing and phylogenetic tools to compare isolates from diarrhoeic human patients (=142), livestock (=38), poultry manure (=5) and dogs (=9) in the same geographic area (Makurdi, north-central Nigeria) and relate them to the global population. In addition, selected isolates were tested for antimicrobial susceptibility (=33) and characterized by PCR ribotyping (=53).

View Article and Find Full Text PDF

Background: Pseudomonas aeruginosa's inherent and adapted resistance makes this pathogen a serious problem for antimicrobial treatments. Furthermore, its biofilm formation ability is the most critical armor against antimicrobial therapy, and the virulence factors, on the other hand, contribute to fatal infection and other recalcitrant phenotypic characteristics. These capabilities are harmonized through cell-cell communication called Quorum Sensing (QS), which results in gene expression regulation via three major interconnected circuits: las, rhl, and pqs system.

View Article and Find Full Text PDF

Impacts of ammoniacal odour removal bioagent on air bacterial community.

Adv Biotechnol (Singap)

February 2024

School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.

While biotechnologies offer eco-friendly solutions for eliminating air contaminants, there is a scarcity of research examining the impacts of microbial purification of air pollutants on the structure and function of air microbial communities. In this study, we explored a Lactobacillus paracasei B1 (LAB) agent for removing ammoniacal odour. The impacts of LAB on air bacterial community were revealed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!