Using ventricular cardiomyocytes of the common frog, Rana temporaria, we investigated the metabolic strategies employed by the heart to tolerate 4 mo of hypoxic submergence (overwintering) as well as acute bouts of anoxia. In contrast to what is observed for the whole animal, there was no change in oxygen consumption in cardiomyocytes isolated from normoxic frogs compared with those isolated from 4-mo hypoxic animals. Furthermore, cells from both normoxic and hypoxic frogs were able to completely recover oxygen consumption following 30 min of acute anoxia. From estimates of ATP turnover, it appears that frog cardiomyocytes are capable of a profound, completely reversible metabolic depression, such that ATP turnover is reduced by >90% of control levels during anoxia but completely recovers with reoxygenation. Moreover, this phenomenon is also observed in frogs that have been subjected to 4 mo of extended hypoxia. We found a significant increase in the stress protein, hsp70, after 1 mo of hypoxic submergence, which may contribute to the heart's remarkable hypoxia and anoxia tolerance and may act to defend metabolism during the overwintering period.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/320424 | DOI Listing |
J Cell Mol Med
January 2025
Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
The pathogenesis of chronic thromboembolic pulmonary hypertension may be multifactorial and requires further studies. We explored alterations in pulmonary artery endothelial cells under the hypoxic and elevated interleukin-17 conditions that are commonly present in patients with chronic thromboembolic pulmonary hypertension. We measured the serum interleukin-17 levels in 10 chronic thromboembolic pulmonary hypertension patients and 10 healthy control persons.
View Article and Find Full Text PDFCureus
December 2024
Department of Pathology, Henry Ford Health, Detroit, USA.
Blastomycosis is a rare fungal infection endemic to North America and parts of Africa. It can be challenging to diagnose until it reaches a critical stage. We present a blastomycosis case in Alabama, emphasizing the importance of early recognition and management.
View Article and Find Full Text PDFMol Ecol
January 2025
Marine and Environmental Biology, University of Southern California, Los Angeles, California, USA.
Anthropogenic carbon dioxide emissions have been increasing rapidly in recent years, driving pH and oxygen levels to record low concentrations in the oceans. Eastern boundary upwelling systems such as the California Current System (CCS) experience exacerbated ocean acidification and hypoxia (OAH) due to the physical and chemical properties of the transported deeper waters. Research efforts have significantly increased in recent years to investigate the deleterious effects of climate change on marine species, but have not focused on the impacts of simultaneous OAH stressor exposure.
View Article and Find Full Text PDFJNCI Cancer Spectr
January 2025
Section on Medical Neuroendocrinology National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA.
Head and neck paragangliomas (HNPGLs) are typically slow-growing, hormonally inactive tumors of parasympathetic paraganglia. Inactivation of prolyl-hydroxylase domain-containing 2 protein causing indirect gain-of-function of hypoxia-inducible factor-2α (HIF-2α), encoded by EPAS1, was recently shown to cause carotid body hyperplasia. We previously described a syndrome with multiple sympathetic paragangliomas caused by direct gain-of-function variants in EPAS1 (Pacak-Zhuang syndrome, PZS) and developed a corresponding mouse model.
View Article and Find Full Text PDFJ Pineal Res
January 2025
Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.
Circadian clocks in the body drive daily cycles in physiology and behavior. A master clock in the brain maintains synchrony with the environmental day-night cycle and uses internal signals to keep clocks in other tissues aligned. Work in cell cultures uncovered cyclic changes in tissue oxygenation that may serve to reset and synchronize circadian clocks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!