Magnetotelluric exploration has shown that the middle and lower crust is anomalously conductive across most of the north-to-south width of the Tibetan plateau. The integrated conductivity (conductance) of the Tibetan crust ranges from 3000 to greater than 20,000 siemens. In contrast, stable continental regions typically exhibit conductances from 20 to 1000 siemens, averaging 100 siemens. Such pervasively high conductance suggests that partial melt and/or aqueous fluids are widespread within the Tibetan crust. In southern Tibet, the high-conductivity layer is at a depth of 15 to 20 kilometers and is probably due to partial melt and aqueous fluids in the crust. In northern Tibet, the conductive layer is at 30 to 40 kilometers and is due to partial melting. Zones of fluid may represent weaker areas that could accommodate deformation and lower crustal flow.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1010580DOI Listing

Publication Analysis

Top Keywords

tibetan crust
12
partial melt
8
aqueous fluids
8
kilometers partial
8
crust
5
detection widespread
4
widespread fluids
4
tibetan
4
fluids tibetan
4
crust magnetotelluric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!