The present study was designed to understand how carbohydrate (CBH) and protein metabolism are related in the penaeid shrimp Litopenaeus vannamei. With this information, we obtained a comprehensive schedule of the protein-carbohydrate metabolism including enzymatic, energetic, and functional aspects. We used salinity to determine its role as a modulator of the protein-carbohydrate metabolism in shrimp. Two experiments were designed. The first experiment evaluated the effect of CBH-salinity combinations in growth and survival, and hemolymph glucose, protein, and ammonia levels, digestive gland glycogen, osmotic pressure, and glutamate dehydrogenase (GDH) of L. vannamei juveniles acclimated during 18 days at a salinity of 15 per thousand and 40 per thousand. The second experiment was done to evaluate the effect of dietary CBH level on pre- and postprandial oxygen consumption, ammonia excretion, and the oxygen-nitrogen ratio (O/N) of juvenile L. vannamei in shrimps acclimated at 40 per thousand salinity. We also evaluated the ability of shrimp to carbohydrate adaptation. We made phosphoenolpyruvate carboxykinase (PECPK) and hexokinase activity measurements after a change in dietary carbohydrate levels at different times during 10 days. The growth rate depended on the combination salinity-dietary CBH-protein level. The maximum growth rate was obtained in shrimps maintained at 15 per thousand salinity and with a diet containing low CBH and high protein. The protein in hemolymph is related to the dietary protein levels; high dietary protein levels produced a high protein concentration in hemolymph. This suggests hemolymph is able to store proteins after a salinity acclimation. Depending on the salinity, the hemolymph proteins could be used as a source of osmotic effectors or as metabolic energy. The O/N values obtained show that shrimp used proteins as a source of energy, mainly when shrimps were fed with low CBH. The role played by postprandial nitrogen excretion (PPNE) in apparent heat increase (AHI) (PPNE/AHI ratio) is lower in shrimps fed diets containing high CBH in comparison with shrimps fed diets containing low CBH levels. These results confirm that the metabolism of L. vannamei juveniles is controlled by dietary protein levels, affecting the processes involved in the mechanical and biochemical transformations of ingested food. A growth depression effect was observed in shrimps fed with low-CBH protein diets and maintained in 40 per thousand salinity. In these shrimps, the hemolymph ammonia concentration (HAC) was significantly higher than that observed in shrimps fed with low CBH and maintained in 15 per thousand salinity. That high HAC level coincided with lower growth rate, which suggests that this level might be toxic for juveniles of L. vannamei. Results obtained for GDH activity showed this enzyme regulated both HAC and hemolymph protein levels, with high values in shrimps fed with low CBH levels and maintained in 40 per thousand salinity, and lower in shrimps fed with high CBH and maintained in 15 per thousand salinity. These differences mean that shrimp with a high-gill GDH activity might waste more energy in oxidation of the excess proteins and amino acids, reducing the energy for growth. It was evident that L. vannamei can convert protein to glycogen by a gluconeogenic pathway, which permitted shrimp to maintain a minimum circulating glucose of 0.34 mg/ml in hemolymph. A high PECPK activity was observed in shrimps fed a diet containing low CBH level indicating that the gluconeogenic pathway is activated, as in vertebrates by low dietary CBH levels. After a change in diet, we observed a change in PEPCK; however, it was lower and seems to depend on the way of adaptation, because it occurred after 6 days when adapting to a high-CBH diet and with little change for the low-CBH diet.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0022-0981(01)00222-2 | DOI Listing |
Appl Environ Microbiol
January 2025
School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA.
Unlabelled: Fish gut microbial communities are important for the breakdown and energy harvesting of the host diet. Microbes within the fish gut are selected by environmental and evolutionary factors. To understand how fish gut microbial communities are shaped by diet, three tropical fish species (hawkfish, ; yellow tang, ; and triggerfish, ) were fed piscivorous (fish meal pellets), herbivorous (seaweed), and invertivorous (shrimp) diets, respectively.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Vet Products Research & Innovation Center Co., Ltd, 141 Moo9, Thailand Science Park, Innovation Clusters (INC2) Tower D 11th floor, Room No. INCD1108-INCD1111 Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
Recently, microsporidiosis caused by a microsporidian [Ecytonucleospora (Enterocytozoon) hepatopenaei, EHP] has been found to seriously impact the global shrimp industry. The aim of this study was to evaluate the therapeutic effects of fumaric acid (FA) in EHP-infected Pacific white shrimp (Penaeus vannamei). In the first 2 groups, non-EHP-infected shrimp were fed FA-supplemented (10 g/kg diet) or normal feed (CM+ and CM-, respectively).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, United States of America.
Present study aimed at improving the immune and antioxidant response of Pacific white shrimp (Litopenaeus vannamei) cultured at high stocking density fed with 0.2% supplementation of lauric acid (LA) and N-acetyl-L-cysteine (NAC). Shrimp (initial average weight = 0.
View Article and Find Full Text PDFAn experiment was conducted for 60 days in a 500L capacity FRP tank containing inland ground saline water (fortified to a level of 50% potassium) with one control (sediment) and three treatments; T1(Paddy Straw Biochar (PSB) in sediment), T2 (Banana Peduncle Biochar (BPB) in sediment), and T3 (PSB + BPB in sediment). Biochar (100 g) was amended with sediment (25 kg) at 9 tons/ha. Shrimps of average weight 5 ± 0.
View Article and Find Full Text PDFArch Microbiol
January 2025
Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, 5 Yushan Road, 266003, Qingdao, P. R. China.
Brine shrimp nauplii are widely used as live food in fish and shellfish aquaculture but they may transmit pathogenic Vibrio to the target species causing significant economic loss. Heavy usage of antibiotics is expensive and environmentally damaging. Use of natural microbes as probiotics for disease management is a more sustainable strategy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!