A novel human nucleotide sugar transporter (NST) which transports both UDP-glucuronic acid (UDP-GlcA) and UDP-N-acetylgalactosamine (UDP-GalNAc) has been identified, cloned and characterized. The strategy for the identification of the novel NST involved a search of the expressed sequence tags database for genes related to the human UDP-galactose transporter-related isozyme 1, followed by heterologous expression of a candidate gene (hUGTrel7) in Saccharomyces cerevisiae and biochemical analyses. Significantly more UDP-GlcA and UDP-GalNAc were translocated from the reaction medium into the lumen of microsomes prepared from the hUGTrel7-expressing yeast cells than into the control microsomes from cells not expressing hUGTrel7. The possibility that this transporter participates in glucuronidation and/or chondroitin sulfate biosynthesis is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0014-5793(01)02358-4 | DOI Listing |
Chembiochem
January 2025
Shandong University - Qingdao Campus, National Glycoengineering Research Center, Room 230, Ganchang Yard F Block, Qingdao campus of Shandong University, 72 Binhai Road,, Jimo District, Qingdao, Shandong, 266237 China, 266237, Qingdao, CHINA.
Nucleotide sugars (NSs) are essential building blocks for the enzymatic assembly of glycans. In this study, we established a preparation and recycling avenue to the biocatalysts for the enzymatic synthesis of NSs. This approach involves fusing two enzymes into a bifunctional chimera and using elastin-like polypeptides (ET64) as a purification tag, which allows for easy recovery of these biocatalysts without the need for chromatography.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China. Electronic address:
This study aims to investigate the physiological changes in growth and metabolic response mechanisms of highland barley under different concentrations of cadmium. To achieve this, cadmium stress was applied to green barley at levels of 20, 40, and 80 mg/L. The results revealed that, under Cd(II) stress, the chlorophyll content and photosynthesis in leaves of highland barley seedlings were inhibited to some extent.
View Article and Find Full Text PDFMikrochim Acta
January 2025
College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
An innovative colorimetric sensing strategy was developed for the detection of glucose by the integration of glucose aptamer, glucose oxidase (GOx), and horseradish peroxidase (HRP), termed aptamer proximal enzyme cascade reactions (APECR). In the presence of glucose, aptamer binding enables GOx to catalyze glucose oxidation into HO efficiently. Subsequently, the adjacent HRP catalyzes the oxidation of the peroxidase substrate, 2,2'-biazobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), utilizing the generated HO, resulting in a distinct color change.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
Simultaneous analysis of multiple phosphorylated metabolites (phosphorylated metabolome) in biological samples is vital to reveal their physiological and pathophysiological functions, which is extremely challenging due to their low abundance in some biological matrices, high hydrophilicity, and poor chromatographic behavior. Here, we developed a new method with ion-pair reversed-phase ultrahigh-performance liquid chromatography and mass spectrometry using BEH C18 columns modified with hybrid surface technology. This method demonstrated good performances for various phosphorylated metabolites, including phosphorylated sugars and amino acids, nucleotides, NAD-based cofactors, and acyl-CoAs in a single run using standard LC systems.
View Article and Find Full Text PDFPlant Sci
January 2025
Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang, 311402, China. Electronic address:
Culm strength is crucial for rice growth, nutrition transportation, and structural resilience, which are essential for lodging resistance and stable production. In this study, we identified a rice thin culm mutant tc4, characterized by thinner culms and thicker cavity walls, resulting in weakened culm mechainical strength. Using map-based cloning, the candidate gene was isolated, and complementation and CRISPR/Cas9 experiments confirmed that a single nucleotide substitution in TC4 is responsible for the thin and brittle culm phenotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!