Mycoplasma virus P1 is one of only four viruses isolated from the genus Mycoplasma. The host for P1, Mycoplasma pulmonis, possesses complex, phase-variable restriction and modification enzymes and the Vsa family of phase-variable surface proteins. The ability of P1 virus to infect host cells is influenced by these phase-variable systems, rendering P1 a valuable tool for assessing host properties. The double-stranded P1 DNA genome was sequenced (11,660 bp) and 11 ORFs were identified. The predicted P1 DNA polymerase is similar to that of phages that are known to have terminal protein (TP) attached to the 5' end of their genome, consistent with previous studies indicating that P1 DNA has covalently attached TP. Most of the other predicted P1 proteins have little sequence similarity to known proteins, and P1 virus is unrelated to the other mycoplasma virus, MAV1, for which the genome sequence is known. One of the predicted P1 proteins, the ORF 8 gene product, contains a repetitive collagen-like motif characteristic of some bacteriophage tail fiber proteins and is a candidate for interacting with the Vsa proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/plas.2000.1501 | DOI Listing |
Cureus
December 2024
Department of Anatomy, A.T. Still University of Health Sciences - Kirksville College of Osteopathic Medicine, Kirksville, USA.
Erythema multiforme major (EMM) is an acute, immune-mediated mucocutaneous disease that rarely affects the genital mucosal surfaces. This study describes a 39-year-old male with this rare disease and unusual presentation. The patient presented to an emergency department with oral lesions, drainage from both eyes, injected sclera, and characteristic targetoid lesions on the face, upper extremities, torso, and plantar surfaces of the feet.
View Article and Find Full Text PDFItal J Pediatr
January 2025
Department of Neonatology, Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China.
Background: To explore the effect of non-pharmacological interventions (NPIs) on respiratory pathogen profiles among hospitalized infants aged 0-3 months in Beijing during the coronavirus disease 2019 (COVID-19) pandemic.
Methods: Respiratory specimens were collected from 1,184 infants aged 0-3 months who were hospitalized for acute respiratory infection at the Children's Hospital affiliated with the Capital Institute of Pediatrics from January 2018 to December 2023. The data were divided into three groups-the pre-epidemic (January 2018 to December 2019), epidemic prevention and control (January 2020 to December 2022), and post-epidemic (January 2023 to December 2023) groups-based on the outbreak of COVID-19 and the implementation and termination of NPIs.
BMC Infect Dis
January 2025
Department of Respiratory, Shenzhen Children's Hospital, Shenzhen, 518038, China.
Objectives: To investigate the impact of COVID-19 pandemic measures on hospitalizations and the alterations and persistence of the epidemiological patterns of 12 common respiratory pathogens in children during the COVID-19 pandemic and after the cessation of the "zero-COVID-19" policy in southern China.
Methods: Respiratory specimens were collected from hospitalized children with acute respiratory infections at Shenzhen Children's Hospital from January 2020 to June 2024. Twelve common respiratory pathogens were detected using multiplex PCR.
Cureus
December 2024
Pediatrics, Centro Hospitalar do Oeste, Unidade Caldas da Rainha, Caldas da Rainha, PRT.
An 11-month-old female patient presented to the pediatric emergency room, reporting a high fever and excessive crying. She began taking amoxicillin and clavulanic acid for acute otitis media five days prior. There was no record of trauma, suspected sexual abuse, or other medications involved.
View Article and Find Full Text PDFCureus
January 2025
Bioregulatory Medicine, Chronic Illness, Biologix Center for Optimum Health, Franklin, USA.
Bronchiectasis is a well-recognized chronic respiratory disease characterized by a productive cough and multi-microbial activation syndrome (MMAS) of various respiratory infections due to what can be the permanent dilatation of the bronchi. Bronchiectasis represents an ongoing challenge to conventional antibiotic treatment as the damaged bronchial environment remains conducive to ongoing opportunistic infections and microbial mutations, leading to multi-drug resistance. Standard treatment guidelines are designed to promptly identify and address the primary infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!