Background: 5'-Methylthioadenosine (MTA), a product of S-adenosylmethionine (SAM) catabolism, could undergo oxidation by mono-oxygenases and auto-oxidation. MTA and SAM effects on oxidative liver injury were evaluated in CCl4-treated rats.

Methods: Male Wistar rats were killed 1-48 h after poisoning with a single intraperitoneal CCl4 dose (0.15 ml/100 g) or with the same dose twice a week for 14 weeks. Daily doses of MTA or SAM (384 micromol/kg), started 1 week before acute CCl4 administration or with chronic treatment, were continued up to the time of sacrifice.

Results: Acute and chronic CCl4 intoxication decreased MTA and, to a lesser extent, SAM and reduced glutathione (GSH) liver levels. MTA administration increased liver MTA without affecting SAM and GSH. SAM treatment caused complete/partial recovery of these compounds. MTA and, to a lesser extent, SAM prevented an increase in liver phospholipid hydroperoxides in acutely and chronically intoxicated rats and in prolyl hydroxylase activity and trichrome-positive areas in chronically treated rats. MTA prevented upregulation of Tgf-beta1, Collagen-alpha1 (I) and Tgf-alpha genes in liver of chronically intoxicated rats, and TGF-beta1-induced transdifferentiation to myofibroblasts and growth stimulation by platelet-derived growth factor-b of stellate cells in vitro.

Conclusions: MTA and SAM protect against oxidative liver injury through partially different mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0168-8278(00)00078-7DOI Listing

Publication Analysis

Top Keywords

mta sam
16
mta
9
sam
8
oxidative liver
8
liver injury
8
mta lesser
8
lesser extent
8
extent sam
8
chronically intoxicated
8
intoxicated rats
8

Similar Publications

Arsenobetaine (AsB), a non-toxic arsenic (As) compound found in marine fish, structurally resembles betaine (GB), a common methyl donor in organisms. This study investigates the potential role of GB in AsB synthesis in marine medaka (Oryzias melastigma) using metabolomic analysis. Dietary exposure to arsenate (As(V)) and varying GB concentrations (0.

View Article and Find Full Text PDF

Unlabelled: All organisms utilize -adenosyl-l-methionine (SAM) as a key co-substrate for the methylation of biological molecules, the synthesis of polyamines, and radical SAM reactions. When these processes occur, 5'-deoxy-nucleosides are formed as byproducts such as -adenosyl-l-homocysteine, 5'-methylthioadenosine (MTA), and 5'-deoxyadenosine (5dAdo). A prevalent pathway found in bacteria for the metabolism of MTA and 5dAdo is the dihydroxyacetone phosphate (DHAP) shunt, which converts these compounds into dihydroxyacetone phosphate and 2-methylthioacetaldehyde or acetaldehyde, respectively.

View Article and Find Full Text PDF

Nuclease-mediated editing of heteroplasmic mitochondrial DNA (mtDNA) seeks to preferentially cleave and eliminate mutant mtDNA, leaving wild-type genomes to repopulate the cell and shift mtDNA heteroplasmy. Various technologies are available, but many suffer from limitations based on size and/or specificity. The use of ARCUS nucleases, derived from naturally occurring I-CreI, avoids these pitfalls due to their small size, single-component protein structure and high specificity resulting from a robust protein-engineering process.

View Article and Find Full Text PDF

The potential and challenges of targeting -negative cancers beyond synthetic lethality.

Front Oncol

September 2023

Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, United Kingdom.

Article Synopsis
  • About 15% of cancers show a loss at the chromosomal site 9p21.3, which is linked to the tumor suppressor gene and the methionine salvage gene (MTAP), impacting cancer cell behavior.
  • When MTAP is lost, it increases the levels of methylthioadenosine (MTA), which inhibits PRMT5, an important enzyme that methylates proteins, including those that regulate gene expression.
  • Targeting the MAT2A/PRMT5 pathway is being explored as a cancer treatment strategy, but understanding its mechanisms and identifying which cancers will respond to this therapy remain critical challenges.
View Article and Find Full Text PDF

All organisms utilize -adenosyl-l-methionine (SAM) as a key co-substrate for methylation of biological molecules, synthesis of polyamines, and radical SAM reactions. When these processes occur, 5'-deoxy-nucleosides are formed as byproducts such as -adenosyl-l-homocysteine (SAH), 5'-methylthioadenosine (MTA), and 5'-deoxyadenosine (5dAdo). One of the most prevalent pathways found in bacteria for the metabolism of MTA and 5dAdo is the DHAP shunt, which converts these compounds into dihydroxyacetone phosphate (DHAP) and 2-methylthioacetaldehyde or acetaldehyde, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!