Prostaglandins (PG), the products of arachidonate metabolism through cyclooxygenase (COX) pathway, protect the pancreas from the acute damage. The existence of two isoforms of COX was documented including: COX-1, present in normal tissues and COX-2, expressed at the site of inflammation, such as induced by bacterial lipopolysaccharide (LPS). Pretreatment with low dose of LPS and activation of nitric oxide (NO) synthase (NOS) has been shown to prevent the injury caused by caerulein-induced pancreatitis (CIP) in the rat. The aim of this study was to investigate the role of COX-1 and COX-2 in the LPS-induced protection of the pancreas against CIP and the involvement of NOS in the activation of COX-PG system in the rats with CIP. CIP was produced by subcutaneous (s.c.) infusion of caerulein (5 microg/kg-h for 5 h) to the conscious rats. Protective dose of LPS, from Escherichia coli, (1 mg/kg) was given intraperitoneally (i.p.) 15 min prior to the start of CIP. Nonselective inhibitor of COX; indomethacin (5 or 10 mg/kg), selective inhibitor of COX-1: resveratrol, or a highly selective inhibitors of COX-2: rofecoxib or NS-398 (2 or 10 mg/kg) were injected i.p. 15 min prior to the administration of LPS. COX-1 or COX-2 mRNA was determined by reverse transcription-polimerase chain reaction (RT-PCR) in the pancreatic tissue. Pancreatic blood flow (PBF) was measured by a laser Doppler flowmetry. PGE2 content in the pancreas was measured by radioimmunoassay. CIP was manifested by an increase of pancreatic weight and plasma amylase activity (by 500% and 700%, respectively) and it was confirmed by histological examination. CIP slightly increased pancreatic PGE2 generation (by 12%) and diminished PBF (by about 40%). LPS (1 mg/kg i.p.), given prior to the start of CIP, increased PGE2 generation in the pancreas (by 45%), reversed the histological manifestations of pancreatitis, reduced the rise in amylase blood level and improved PBF. Administration of nonselective inhibitor of COX; indomethacin (5 or 10 mg/kg i.p.) prior to the injection of LPS abolished its protective effects on CIP and reduced pancreatic PGE2 generation. Selective inhibitor of COX-1; resveratrol (10 mg/kg i.p.) given prior to the injection of LPS reversed its protective effects against CIP. Pretreatment with a selective inhibitors of COX-2: rofecoxib or NS-398 (10 mg/kg) attenuated LPS-induced pancreatic protection in the CIP rats. COX-1 expression was detected in the intact pancreas and was not significantly changed by CIP, LPS, indomethacin, NS-389 and their combination, while COX-2 mRNA expression appeared in the pancreas of ratssubjected to CIP and was significantly increased after LPS injection to these rats. Addition of selective COX-2 inhibitor; NS-389, or nonselective inhibitor of COX; indomethacin, enhanced COX-2 mRNA expression in the rats with CIP pretreated with LPS. Pretreatment of the rats with inhibitor of NOS; L-NNA (20 mg/kg i.p.), given together with LPS, 15 min prior to the start of caerulein overstimulation, resulted in complete reversion of LPS-induced pancreatic protection and decreased PGE2 generation stimulated by LPS. Addition to L-NNA of the substrate for NOS; L-arginine (100 mg/kg i.p.), restored pancreatic protection afforded by low dose of LPS and increased pancreatic PGE2 level in the rats with CIP. We conclude that: 1. increased pancreatic PGE2 generation, induced by low dose LPS pretreatment, contributes to the pancreatic resistance to acute damage produced by caerulein overstimulation and 2. the NO-system is involved in above stimulation of PGE2 generation and pancreatic protection against acute damage.
Download full-text PDF |
Source |
---|
Alzheimers Dement
December 2024
University of Southern California, Los Angeles, CA, USA.
Background: Synaptic loss predicts cognitive decline in Alzheimer's disease (AD). However, the critical disease modifying molecular mechanisms of synaptic failure remain elusive. Animal studies implicate the increased activation of cytosolic phospholipase (cPLA2) activation in synaptic loss and neuroinflammation.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
Background: Multiple AD risk genes are implicated in lipid metabolism, and plasma and brain lipid levels are altered in AD. Astrocytes are enriched in key lipid-related factors and are likely contributors to altered lipid homeostasis in AD. We hypothesize that APP/Aβ-related pathology and neuroimmune factors modulate astrocytic gene transcription that promote maladaptive changes in lipid pathways, including aberrant astrocytic production and release of lipids that could affect Aβ pathology and neuronal deficits.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Applied Organic Chemistry Department, National Research Center, Dokki, Cairo 12622, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt. Electronic address:
The current research focuses on the design and synthesis of celecoxib analogues incorporating sulphonamide pyrazole moieties 4, 5, 6a-e, and 7a-f with the aim of achieving a broad range of COX-2 selectivity in vitro. Among these, compounds 6b-d, 7a, 7e, and 7d exhibited potent inhibition, with IC values ranging between 0.05 and 0.
View Article and Find Full Text PDFNeurochem Int
December 2024
Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, 970, Taiwan; Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien, 970, Taiwan. Electronic address:
Previous studies have shown that celecoxib or NSAID may paradoxically induce cyclooxygenase-2 (COX-2) expression and trigger inflammation-like responses in airway smooth muscle cells and renal mesangial cells. Despite the extensive research on celecoxib, its atypical biological effect on the induction of COX-2 in astroglial cells within the central nervous system (CNS) remains unexplored. In the present study, we investigated the impact of celecoxib on COX-2 and Glial Fibrillary Acidic Protein (GFAP) expression and explored the mechanisms underlying celecoxib-regulated COX-2 expression in cortical astrocytes of rats.
View Article and Find Full Text PDFFront Neurosci
December 2024
Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
Background: Seizures can cause as well as result from neuroinflammation. This study was performed to identify the hematologic inflammatory parameters (HIPs) and inflammatory mediators that change after a single seizure in a canine pentylenetetrazole (PTZ)-induced seizure model.
Methods: Five healthy Beagle dogs were used in this study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!