Purification, crystallization and preliminary X-ray analysis of two crystal forms of ribonuclease Sa3.

Acta Crystallogr D Biol Crystallogr

Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 842 51 Bratislava, Slovak Republic.

Published: May 2001

RNase Sa3 produced by Streptomyces aureofaciens strain CCM 3239 belongs to the T1 family of microbial ribonucleases. It is closely related both to RNase Sa, studied in detail earlier, and to RNase Sa2 produced by the same microorganism. The most important property of RNase Sa3 is the relatively high cytotoxic activity, which was not observed for RNase Sa and Sa2. Recombinant RNase Sa3 was overexpressed in Escherichia coli and purified to high homogeneity. The hanging-drop vapour-diffusion method was used for crystallization. The two crystal forms are trigonal P3(1)21 and tetragonal P4(1)2(1)2, with unit-cell parameters a = b = 64.7, c = 69.6 A, gamma = 120 degrees and a = b = 34.0, c = 147.2 A, respectively. They diffract to 2.0 and to 1.7 A resolution, respectively, using synchrotron radiation. The asymmetric units of crystal forms I and II contain one molecule of the enzyme, which corresponds to V(M) = 3.8 A(3) Da(-1) with a solvent content of 68% and V(M) = 1.9 A(3) Da(-1) with a solvent content of 37%, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1107/s0907444901003456DOI Listing

Publication Analysis

Top Keywords

crystal forms
12
rnase sa3
12
rnase sa2
8
da-1 solvent
8
solvent content
8
rnase
6
purification crystallization
4
crystallization preliminary
4
preliminary x-ray
4
x-ray analysis
4

Similar Publications

Multidimensional Resonance Controlled by Critical Size in Printed Binary Colloidal Crystals for High-Contrast Imaging.

J Am Chem Soc

January 2025

Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Colloidal crystal engineering enables the precise construction of structures with remarkable properties. However, the flexible and synergistic regulation of multiple properties of colloidal crystals remains a significant challenge. Here, we inspire from Brazilian opals to self-assemble polymer nanoparticles in the gaps of a single-layer opal substrate to fabricate large-scale binary colloidal crystals (BCCs).

View Article and Find Full Text PDF

In this article we describe research on the synthesis and characterization of a family of "Janus" amphiphiles composed of disaccharide head groups and alkaloid units joined together via a methylene linker, and bearing a lateral aliphatic chain of varying length. The condensed phases formed by self-organization of the products as a function of temperature were characterized by differential scanning calorimetry, thermal polarized light microscopy, and small angle X-ray scattering, allied with computational modelling and simulations. Structural studies on heating specimens from the solid showed that some homologues exhibited lamellar, columnar and bicontinuous mesophases, whereas the same homologues revealed different phase sequences on cooling from the amorphous liquid.

View Article and Find Full Text PDF

Transient amorphous phases are known as functional precursors in the formation of crystalline materials, both in vivo and in vitro. A common route to regulate amorphous calcium carbonate (ACC) crystallization is via direct interactions with negatively charged macromolecules. However, a less explored phenomenon that can influence such systems is the electrostatically driven formation of Ca-macromolecule dense phases.

View Article and Find Full Text PDF

Moiré superlattices formed in van der Waals (vdW) bilayers of 2D materials provide an ideal platform for studying previously undescribed physics, including correlated electronic states and moiré excitons, owing to the wide-range tunability of their lattice constants. However, their crystal symmetry is fixed by the monolayer structure, and the lack of a straightforward technique for modulating the symmetry of moiré superlattices has impeded progress in this field. Herein, a simple, room-temperature, ambient method for controlling superlattice symmetry is reported.

View Article and Find Full Text PDF

Organic cocrystals have garnered significant research attention owing to their distinctive properties and promising applications. However, challenges in molecular structure design and control of intermolecular interactions continue to impede further advancements. In this study, two novel cocrystals were successfully formed from a series of synthesized benzotriazole derivatives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!