Validation of dual energy X-ray absorptiometry (DXA) by comparison with chemical analysis of dogs and cats.

Int J Obes Relat Metab Disord

Aberdeen Centre for Energy Regulation and Obesity, Department of Zoology, University of Aberdeen, Aberdeen, Scotland, UK.

Published: March 2001

Background: Dual-energy X-ray absorptiometry (DXA) has been used extensively to measure body composition, but has been validated by comparison to chemical analysis on relatively few occasions. Moreover, these previous validation studies have ground up entire carcasses prior to chemical analysis, thus potentially obscuring sources of error in the DXA analysis.

Objective: The purpose of this study was to validate DXA by comparison to chemical analysis in dogs and cats, performing chemical analysis on dissected rather than ground carcasses to reveal sources of discrepancy between the two methods.

Design: Sixteen animals (10 cats and 6 dogs weighing between 1.8 and 22.1 kg) were scanned by DXA post-mortem using a Hologic QDR-1000 W pencil beam machine and then dissected into 22 separate components. Individual tissues were dried and then sub-sampled for analysis of fat content by Soxholet extraction, or ashing in a muffle furnace. Body composition by DXA was compared to body composition by chemical analysis and discrepancies between the two correlated with chemical composition of individual tissues. We also explored the capability of the machine to establish the fat contents of mixtures of ground beef, lard and water.

Results: DXA estimates were strongly correlated with estimates derived from chemical analysis: total body mass (r=1.00), lean tissue mass (r=0.999), body water content (r=0.992) and fat mass (r=0.982). Across individuals the absolute and percentage discrepancies were also small: total body mass (13.2 g, 1.02%), lean tissue mass (119.4 g, 2.64%), water content (101 g, 1.57%) and fat content (28.5 g, 2.04%), where the percentage error is expressed relative to the average mass of that component across all individuals. Although on average DXA compared very well to chemical analysis, individual errors were much greater. Individual errors in the lean tissue and fat tissue components were strongly correlated with the fat content of skeletal muscle and the lean content of mesenteric fat. The error in the DXA estimate of total fat content was related to skeletal muscle hydration. Experimental studies using mixtures of lean ground beef, water and lard indicated that tissue hydration may have important effects on the perception of tissue fat content by DXA. Bone mineral content by DXA was approximately 30% lower than whole body ash content but only 7.7% lower than ash content of the bones.

Conclusions: On average pencil beam DXA analysis using the Hologic QDR-1000 W machine provides an accurate estimate of body composition in subjects weighing between 1.8 and 22.1 kg. Individual discrepancies, however, can be large and appear to be related to lean tissue hydration.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.ijo.0801544DOI Listing

Publication Analysis

Top Keywords

chemical analysis
32
fat content
20
body composition
16
lean tissue
16
dxa
12
comparison chemical
12
content
11
analysis
10
chemical
9
fat
9

Similar Publications

Violence experience, interpersonal and community-level, is commonly reported by people living with HIV (PLWH). Understanding the impact of the various forms of violence on HIV outcomes is critical for prioritizing violence screening and support resources in care settings. From February 2021 to December 2022, among 285 PLWH purposively sampled to attain diversity by gender, race/ethnicity, and HIV care retention status in Atlanta, Georgia, we examined interpersonal and community violence experiences and proxy measures of violence (post-traumatic stress disorder (PTSD), anxiety, depression) and their associations with HIV outcomes (engagement and retention in care and HIV viral suppression) using multivariable analysis.

View Article and Find Full Text PDF

Background: Wearable sensor technologies, often referred to as "wearables," have seen a rapid rise in consumer interest in recent years. Initially often seen as "activity trackers," wearables have gradually expanded to also estimate sleep, stress, and physiological recovery. In occupational settings, there is a growing interest in applying this technology to promote health and well-being, especially in professions with highly demanding working conditions such as first responders.

View Article and Find Full Text PDF

Background: Japanese encephalitis (JE) is a zoonotic parasitic disease caused by the Japanese encephalitis virus (JEV), and may cause fever, nausea, headache, or meningitis. It is currently unclear whether the epidemiological characteristics of the JEV have been affected by the extreme climatic conditions that have been observed in recent years.

Objective: This study aimed to examine the epidemiological characteristics, trends, and potential risk factors of JE in Taiwan from 2008 to 2020.

View Article and Find Full Text PDF

Use of the FHTHWA Index as a Novel Approach for Predicting the Incidence of Diabetes in a Japanese Population Without Diabetes: Data Analysis Study.

JMIR Med Inform

January 2025

Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

Background: Many tools have been developed to predict the risk of diabetes in a population without diabetes; however, these tools have shortcomings that include the omission of race, inclusion of variables that are not readily available to patients, and low sensitivity or specificity.

Objective: We aimed to develop and validate an easy, systematic index for predicting diabetes risk in the Asian population.

Methods: We collected the data from the NAGALA (NAfld [nonalcoholic fatty liver disease] in the Gifu Area, Longitudinal Analysis) database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!