In contrast to gram-negative bacteria, little is known about the mechanisms by which gram-positive bacteria degrade the toxic metabolic intermediate methylglyoxal (MG). Clostridium beijerinckii BR54, a Tn1545 insertion mutant of the NCIMB 8052 strain, formed cultures that contained significantly more (free) MG than wild-type cultures. Moreover, BR54 was more sensitive to growth inhibition by added MG than the wild type, suggesting that it has a reduced ability to degrade MG. The single copy of Tn1545 in this strain lies just downstream from gldA, encoding glycerol dehydrogenase. As a result of antisense RNA production, cell extracts of BR54 possess significantly less glycerol dehydrogenase activity than wild-type cell extracts (H. Liyanage, M. Young, and E. R. Kashket, J. Mol. Microbiol. Biotechnol. 2:87-93, 2000). Inactivation of gldA in both C. beijerinckii and Clostridium difficile gave rise to pinpoint colonies that could not be subcultured, indicating that glycerol dehydrogenase performs an essential function in both organisms. We propose that this role is detoxification of MG. To our knowledge, this is the first report of targeted gene disruption in the C. difficile chromosome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC92829PMC
http://dx.doi.org/10.1128/AEM.67.5.2004-2010.2001DOI Listing

Publication Analysis

Top Keywords

glycerol dehydrogenase
16
clostridium beijerinckii
8
beijerinckii clostridium
8
clostridium difficile
8
cell extracts
8
clostridium
4
difficile detoxify
4
detoxify methylglyoxal
4
methylglyoxal novel
4
novel mechanism
4

Similar Publications

Functional RNA mining using random high-throughput screening.

Nucleic Acids Res

November 2024

Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Tongchaunghui South District, No. 40, Shangchong South, Haizhu District, Guangzhou, Guangdong 510000, P.R. China.

Functional RNA participates in various life processes in cells. However, there is currently a lack of effective methods to screen for functional RNA. Here, we developed a technology named random high-throughput screening (rHTS).

View Article and Find Full Text PDF

Active Site Engineering of a Glycerol Dehydrogenase Improves its Oxidative Activity and Scope Toward Glycerol Derivatives.

Chemistry

December 2024

Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón, 194, Donostia-San Sebastián, 20014, Spain.

Regioselective oxidation of glyceryl alkyl ethers is of utmost importance for the fabrication of substituted hydroxy ketones and enantiopure 1,2-diols as green solvents and pharmaceutical building blocks, respectively. An engineered glycerol dehydrogenase from Bacillus stearothermophilus was described to perform the regioselective oxidation of alkyl glycerol ethers, identifying position 252 as key for accepting larger substrates than glycerol. In this work, we further engineer that position through partial saturation mutagenesis to broaden the substrate scope toward other glycerol derivatives, improving enzyme kinetics and minimizing product inhibition.

View Article and Find Full Text PDF

SERS-based microdroplet platform for high-throughput screening of strains for the efficient biosynthesis of D-phenyllactic acid.

Front Bioeng Biotechnol

September 2024

Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China.

D-Phenyllactic acid (D-PLA) is a potent antimicrobial typically synthesized through chemical methods. However, due to the complexity and large pollution of these reactions, a simpler and more eco-friendly approach was needed. In this study, a strain for D-PLA biosynthesis was constructed, but the efficiency was restricted by the activity of D-lactate dehydrogenase (DLDH).

View Article and Find Full Text PDF

Engineering the glycerol-3-phosphate pathway could enhance erythritol production by accelerating glycerol uptake. However, little work has been conducted on the alternative dihydroxyacetone (DHA) pathway in Yarrowia lipolytica. Herein, this route was identified and characterized in Y.

View Article and Find Full Text PDF

Rapid availability of ethylene glycol test results with enzymatic assay.

Clin Toxicol (Phila)

August 2024

Utah Poison Control Center, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.

Background: Ethylene glycol poisoning causes metabolic acidosis, organ injury, and death. Ethylene glycol testing is unavailable in many areas. Our laboratory uses an automated glycerol dehydrogenase enzymatic assay to screen for ethylene glycol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!