Effect of some fractions of alveolar surfactant (phospholipids and SP-A) on the bactericidal activity of different antimicrobials against some respiratory pathogens.

Clin Microbiol Infect

Dipartimento Scienze Ematoloqiche Pneumoloqiche Cardiovascolari Mediche Chirurgiche, Università di Pavia, Pavia, Italy.

Published: March 2001

Objectives: To investigate the effects of physiologic concentrations, at alveolar level, of some fractions of pulmonary surfactant (phospholipids and SP-A) on the bactericidal activity of different antimicrobials against some respiratory pathogens.

Methods: The antimicrobial agents cefdinir, sparfloxacin, clarithromycin, teicoplanin, cefepime, ciprofloxacin, netilmicin and tobramycin, depending on their specific activity, were investigated against Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Klebsiella pneumoniae and Pseudomonas aeruginosa. Killing curves were carried out with antimicrobials at 0.5 and 2 MIC, SP-A at 1 and 5 mg/L and phospholipids at 50 mg/L.

Results: Time-kill experiments showed that while SP-A never modified the activity of antimicrobials, phospholipids exerted, in some cases, a weak antagonistic effect. Among antibacterials and pathogens investigated, phospholipids were able to decrease the rate of killing of cefepime and ciprofloxacin only on P. aeruginosa, both at 0.5 and at 2 MIC, with an increase of about 1 log in CFU. The combination of SP-A and phospholipids never modified the effect observed in the presence of lipids alone.

Conclusions: The paucity of data only allow us to observe that the examined antibiotics do not have substantially reduced activity against respiratory pathogens studied in the presence of physiologic concentrations of some fractions of surfactant. Cefepime alone already exerted a small effect, and ciprofloxacin at 2 MIC, even in the presence of phospholipids, retained its bactericidal activity.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1469-0691.2001.00209.xDOI Listing

Publication Analysis

Top Keywords

bactericidal activity
12
activity antimicrobials
12
surfactant phospholipids
8
phospholipids sp-a
8
sp-a bactericidal
8
antimicrobials respiratory
8
respiratory pathogens
8
physiologic concentrations
8
cefepime ciprofloxacin
8
phospholipids
7

Similar Publications

is an alga with high fucoxanthin, phlorotannin, fucoidan, sterol, and astaxanthin. The silver nanoparticles of (AgNPs-Fv) are expected to have high antioxidant, anti-collagenase, and antibacterial activities. The aim of this study was to characterize the distribution and size of AgNPs-Fv and determine their antioxidant, anti-collagenase, and antibacterial activities.

View Article and Find Full Text PDF

Genome-Guided Identification and Characterisation of Broad-Spectrum Antimicrobial Compounds of Bacillus velezensis Strain PD9 Isolated from Stingless Bee Propolis.

Probiotics Antimicrob Proteins

January 2025

Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.

The emergence of multidrug-resistant pathogens presents a significant global health challenge, which is primarily fuelled by overuse and misuse of antibiotics. Bacteria-derived antimicrobial metabolites offer a promising alternative strategy for combating antimicrobial resistance issues. Bacillus velezensis PD9 (BvPD9), isolated from stingless bee propolis, has been reported to have antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA).

View Article and Find Full Text PDF

Biosynthesis and activity of Zn-MnO nanocomposite in vitro with molecular docking studies against multidrug resistance bacteria and inflammatory activators.

Sci Rep

January 2025

Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.

This study investigated the green synthesis of Zn-MnO nanocomposites via the fungus Penicillium rubens. Herein, the synthesized Zn-MnO nanocomposites were confirmed by UV-spectrophotometry with a top peak (370 nm). Transmission electron microscopy confirmed irregular particles with a spherical-like shape ranging from 25.

View Article and Find Full Text PDF

Deep eutectic solvent enhances antibacterial activity of a modular lytic enzyme against Acinetobacter baumannii.

Sci Rep

January 2025

Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland.

In this study, we evaluated the combined effect between MLE-15, a modular lytic enzyme composed of four building blocks, and reline, a natural deep eutectic solvent. The bioinformatic analysis allowed us to determine the spatial architecture of MLE-15, whose components were bactericidal peptide cecropin A connected via a flexible linker to the cell wall binding domain (CBD) of mesophilic 201ϕ2 - 1 endolysin and catalytic domain (EAD) of highly thermostable Ph2119 endolysin. The modular enzyme showed high thermostability with the melting temperature of 93.

View Article and Find Full Text PDF

Neisseria gonorrhoeae is an on-going public health problem due in part to the lack of success with efforts to develop an efficacious vaccine to prevent this sexually transmitted infection. The gonococcal transferrin binding protein B (TbpB) is an attractive candidate vaccine antigen. However, it exhibits high levels of antigenic variability, posing a significant obstacle in evoking a broadly protective immune response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!