The relationship of Staphylococcus isolates was determined among a collection of 26 clinical strains at the Centre Hospitalier Universitaire de Rabat. These isolates originated principally from blood culture and wounds. In order to affirm the clonal origins of these isolates, six phenotype (biotype, anti-biotype, serotype, phage type), and genotype (random amplified polymorphic DNA, pulsed field gel electrophoresis) methods were used. Biotyping, anti-biotyping, phage and serotyping were generally not sufficient while many isolates remained non-phage typeable. Random amplified polymorphic DNA analysis used in epidemiological typing seemed suitable for S. epidermidis and S. haemolyticus. However, rigorous standardization will be needed to assure reliable results. Pulsed field gel electrophoresis discriminated more efficiently than random amplification polymorphic DNA analysis. This study attests to the suitability of two or more methods in combination for typing Staphylococcus isolates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0369-8114(00)00014-6 | DOI Listing |
J Appl Toxicol
January 2025
Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, São Paulo, Brazil.
The present systematic review aims to put together human population studies that include some relationship between genetic polymorphisms and genotoxicity as well as to evaluate the quality of the published studies induced by cigarette smoke exposure in vivo. The present systematic review was built according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Different genotoxicity assays were used by different authors, although the major goal was the genotoxicity assessment by means of micronucleus, comet, sister chromatid exchange, and chromosomal aberration assays.
View Article and Find Full Text PDFIr Vet J
January 2025
Animal and Poultry Production Division, Department of Animal and Poultry Breeding, Desert Research Center, Cairo, Egypt.
Brucellosis is a highly contagious zoonotic bacterial disease. It has considerable negative consequences on the animal production industry worldwide. The objective of this study was to investigate the genetic and molecular variations in Shami goat susceptible to Brucella infection.
View Article and Find Full Text PDFSci Rep
January 2025
Sexually Transmitted and Bloodborne Infections Surveillance and Molecular Epidemiology, Sexually Transmitted and Bloodborne Infections Division at the JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, R3E 3L5, Canada.
Human Immunodeficiency Virus Type 1 (HIV) set-point viral load is a strong predictor of disease progression and transmission risk. A recent genome-wide association study in individuals of African ancestries identified a region on chromosome 1 significantly associated with decreased HIV set-point viral load. Knockout of the closest gene, CHD1L, enhanced HIV replication in vitro in myeloid cells.
View Article and Find Full Text PDFPoult Sci
January 2025
National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Pullorum disease (PD) is a widespread disease that causes significant economic losses within the poultry industry of developing countries. An effective strategy for its prevention and control involves the implementation of decontamination procedures utilizing highly specific on-site detection techniques. In this study, a single-nucleotide polymorphism (SNP) site within the group_17537 gene of Salmonella enterica serovar Gallinarum biovars Pullorum (S.
View Article and Find Full Text PDFHLA
January 2025
HLA and Histocompatibility Laboratory, CHRU de Nancy, Vandœuvre-lès-Nancy, France.
The novel allele HLA-DPB1*1617:01 differs from HLA-DPB1*05:01:01:01 by one non-synonymous nucleotide substitution in exon 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!