The present study examined whether the cisplatin induced urinary concentration defect can be related to an altered regulation of aquaporin (AQP) water channels in the kidney. Cisplatin (8 mg/kg) was injected intraperitoneally into male Sprague-Dawley rats. The control group was without cisplatin treatment. Four d later, the expression of AQP1, AQP2, and AQP3 proteins was determined in the kidney. To specify further the primary point of derangement in the pathway that activates the arginine vasopressin-mediated AQP channels, different components of adenylyl cyclase complex were examined separately. The cisplatin treatment caused a polyuric renal failure in association with decreases of free water reabsorption. The expression of AQP1 and AQP2 was decreased in the cortex, the outer medulla, and the inner medulla, whereas that of AQP3 was decreased in the outer medulla and the inner medulla. The expression of AQP2 proteins in the apical membrane-enriched fraction decreased in parallel with that in the subapical vesicle-enriched fraction, indicating a preserved targeting. Immunohistochemistry of the outer medulla also revealed that cisplatin decreased immunoreactivity for AQP1, AQP2, and AQP3. The arginine vasopressin-evoked generation of cyclic adenosine monophosphate was attenuated by cisplatin, being most prominent in the outer medulla. However, the cyclic adenosine monophosphate generation in response to forskolin was not affected, whereas that to sodium fluoride was diminished significantly. Cisplatin also decreased the expression of Gsalpha proteins in the outer medulla and the inner medulla. These results suggest that a reduced expression of AQP water channels accounts at least in part for the cisplatin-induced urinary concentration defect.

Download full-text PDF

Source
http://dx.doi.org/10.1681/ASN.V125875DOI Listing

Publication Analysis

Top Keywords

outer medulla
20
water channels
12
aqp1 aqp2
12
medulla inner
12
inner medulla
12
cisplatin
8
urinary concentration
8
concentration defect
8
aqp water
8
cisplatin treatment
8

Similar Publications

Background: As ferroptosis is a key factor in renal fibrosis (RF), iron deposition monitoring may help evaluating RF. The capability of quantitative susceptibility mapping (QSM) for detecting iron deposition in RF remains uncertain.

Purpose: To investigate the potential of QSM to detect iron deposition in RF.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how MRI-based T relaxation time measurements can detect changes in kidney structure caused by radiation.
  • Researchers used two mouse models to expose kidneys to different radiation methods and analyzed MRI results alongside histological and serum biochemistry assessments.
  • The findings showed increased T values in specific kidney areas of irradiated mice compared to controls, indicating that MRI can identify radiation damage before other symptoms appear.
View Article and Find Full Text PDF

Background: Structural analysis of soft biological tissues is conventionally done with destructive 2D histology. 3D information can be accessed with non-invasive imaging methods, such as X-ray micro-computed tomography (micro-CT). While attenuation-based X-ray imaging alone does not provide reasonable contrast with soft-tissue samples, the combination with contrast-enhancing staining has proven effective.

View Article and Find Full Text PDF

Introduction: Milan hypertensive strain (MHS) of rat represents as one of the ideal rat models to study the genetic form of hypertension associated with aberrant renal salt reabsorption. In contrast to Milan normotensive strain (MNS), MHS rats possess missense mutations in three adducin genes and develop hypertension at 3 months old due to upregulation of sodium-chloride cotransporter (NCC). At prehypertensive stage (23-25 days old), MHS rats show enhanced protein abundance of Na+-K+-2Cl- cotransporter (NKCC2) but retain blood pressure comparable to MNS probably through enhanced GFR and reduced NCC and α-subunit of epithelial sodium channel (ENaC) expressed in distal convoluted tubule (DCT) and collecting duct (CD).

View Article and Find Full Text PDF

Expression of tryptophan hydroxylase in rat adrenal glands: Upregulation of TPH2 by chronic stress.

Psychoneuroendocrinology

January 2025

Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, La Laguna Ticomán, CP 07360, México. Electronic address:

Article Synopsis
  • * The study found that CRS boosts TPH2 expression and activity specifically in the left adrenal gland while decreasing TPH levels in the dorsal raphe nucleus (DRN), which is involved in serotonin production.
  • * Overall, the results suggest that CRS leads to higher serotonin synthesis in the adrenal glands due to increased TPH2, highlighting a complex interaction between stress and hormone regulation in the body.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!