Noninvasive treatment of ruptured postcatheterization pseudoaneurysms is rare. We report the use of ultrasonographically guided compression repair for the treatment of ruptured pseudoaneurysms in 2 cases. To ensure the immediate stop of bleeding, more compression was applied than for nonruptured pseudoaneurysms, regardless of flow in the femoral artery or vein, thus maximizing the effectiveness of this therapy. With this method, complete thrombosis of the pseudoaneurysm could be achieved in less than 30 minutes. In both cases, ultrasonographically guided compression repair was faster than the time needed to prepare an operating room for surgical treatment. In follow-up examinations, no recurrences or further complications were detected. Ultrasonographically guided compression repair can be used for noninvasive treatment of ruptured pseudoaneurysms in some cases, provided that more compression than indicated for nonruptured pseudoaneurysms is applied. Further clinical experience with more patients will be necessary to determine the exact benefits and possible limitations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7863/jum.2001.20.4.409 | DOI Listing |
Biofabrication
January 2025
Division of Engineering, New York University Abu Dhabi, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates, Abu Dhabi, 129188, UNITED ARAB EMIRATES.
Corneal blindness, a leading cause of visual impairment globally, has created a pressing need for alternatives to corneal transplantation due to the severe shortage of donor tissues. In this study, we present a novel interpenetrating network hydrogel composed of gelatin methacryloyl (GelMA) and oxidized carboxymethyl cellulose (OxiCMC) for bioprinting a biomimetic corneal stroma equivalent. We tested different combinations of GelMA and OxiCMC to optimize printability and subsequently evaluated these combinations using rheological studies for gelation and other physical, chemical, and biological properties.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Materials Engineering, Indian Institute of Science Bangalore, Karnataka 560012, India.
The cartilage possesses limited regenerative capacity, necessitating advanced approaches for its repair. This study introduces a bioink designed for cartilage tissue engineering (TE) by incorporating ionically cross-linkable alginate into the photo-cross-linkable MuMA bioink, resulting in a double cross-linked interpenetrating network (IPN) hydrogel. Additionally, hyaluronic acid (HA), a natural component of cartilage and synovial fluid, was added to enhance the scaffold's properties.
View Article and Find Full Text PDFJ Vasc Access
January 2025
Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
Background: Extracorporeal membrane oxygenation (ECMO) is a critical treatment for severe cardiopulmonary failure. However, traditional ECMO decannulation methods, such as manual compression and surgical repair, are associated with significant complications. This study evaluates suture-mediated closure devices, specifically Perclose ProGlide, as a potentially favorable decannulation strategy.
View Article and Find Full Text PDFBioact Mater
April 2025
Department of Orthopedic Surgery, First People's Hospital of Foshan, Foshan, Guangdong, 528000, PR China.
Uncontrollable non-compressible hemorrhage and traumatic infection have been major causes of mortality and disability in both civilian and military populations. A dressing designed for point-of-care control of non-compressible hemorrhage and prevention of traumatic infections represents an urgent medical need. Here, a novel self-gelling sponge OHN@ε-pL is developed, integrating N-succinimidyl ester oxidized hyaluronic acid (OHN) and ε-poly-L-lysine (ε-pL).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Honghuagang District, Guizhou, China.
With the rise of bone tissue engineering (BET), 3D-printed HA/PCL scaffolds for bone defect repair have been extensively studied. However, little research has been conducted on the differences in osteogenic induction and regulation of macrophage (MPs) polarisation properties of HA/PCL scaffolds with different fibre orientations. Here, we applied 3D printing technology to prepare three sets of HA/PCL scaffolds with different fibre orientations (0-90, 0-90-135, and 0-90-45) to study the differences in physicochemical properties and to investigate the response effects of MPs and bone marrow mesenchymal stem cells (BMSCs) on scaffolds with different fibre orientations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!