Altered vitamin D receptor (VDR) level has been proposed to explain differences in intestinal responsiveness to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. We tested whether the enterocyte VDR level influences 1,25(OH)2D3-mediated gene expression and transepithelial calcium (Ca) transport in the human intestinal cell line Caco-2. Cells were stably transfected with a human metallothionein (hMT) IIA promoter-human VDR (hVDR) complementary DNA (cDNA) transgene that overexpressed hVDR in response to heavy metals. In MTVDR clones, induction of 25-hyroxyvitamin D3-24-hydroxylase (24-OHase) messenger RNA (mRNA) expression by 1,25(OH)2D3 (10(-9) M, 4 h) was correlated to metal-induced changes in nuclear VDR level (r2 = 0.99). In MTVDR clones, basal VDR level was 2-fold greater and 1,25(OH)2D3-mediated Ca transport (10(-7) M, 24 h) was 43% higher than in parental Caco-2 cells. Treatment of MTVDR clones with Cd (1 microM, 28 h) increased VDR level by 68%, significantly enhanced 1,25(OH)2D3-mediated Ca transport by 24%, and increased accumulation of calbindin D9K mRNA by 76% relative to 1,25(OH)2D3 alone. These observations support the hypothesis that the enterocyte VDR level is an important modulator of intestinal responsiveness to 1,25(OH)2D3.

Download full-text PDF

Source
http://dx.doi.org/10.1359/jbmr.2001.16.4.615DOI Listing

Publication Analysis

Top Keywords

vdr level
24
caco-2 cells
12
mtvdr clones
12
vitamin receptor
8
gene expression
8
calcium transport
8
intestinal responsiveness
8
enterocyte vdr
8
125oh2d3-mediated transport
8
level
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!