Synthesis of fluorogenic substrates for continuous assay of phosphatidylinositol-specific phospholipase C.

Bioconjug Chem

Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA.

Published: August 2001

An improved synthesis of fluorogenic substrate analogues for phosphatidylinositol-specific phospholipase C (PI-PLC) is described. The water-soluble substrates, which are derived from fluorescein, are not fluorescent until cleaved by the enzyme, and provide a convenient means to continuously monitor PI-PLC activity. The improvement in the synthesis lies in the method used to protect the hydroxyl groups of the inositol portion of the substrate molecule and allows a milder deprotection procedure to be used. The result is a much more reproducible synthesis of the substrate. The improved procedure has been employed to synthesize a series of fluorogenic substrates, which differ in the length of the aliphatic tail attached to the fluorescein portion of the molecule. The length of the tail was found to have a significant effect on the rate of cleavage of these substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bc0001138DOI Listing

Publication Analysis

Top Keywords

synthesis fluorogenic
8
fluorogenic substrates
8
phosphatidylinositol-specific phospholipase
8
synthesis
4
substrates
4
substrates continuous
4
continuous assay
4
assay phosphatidylinositol-specific
4
phospholipase improved
4
improved synthesis
4

Similar Publications

Heterogeneity in Fluorescence-Stained Sperm Membrane Patterns and Their Dynamic Changes Towards Fertilization in Mice.

Front Biosci (Landmark Ed)

January 2025

Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 400-8510 Kofu, Japan.

Background: Sperm represent a heterogeneous population crucial for male reproductive success. Additionally, sperm undergo dynamic changes during maturation and capacitation. Despite these well-established processes, the complex nature of sperm heterogeneity and membrane dynamics remains elusive.

View Article and Find Full Text PDF

The Type III Intermediate Filament Protein Peripherin Regulates Lysosomal Degradation Activity and Autophagy.

Int J Mol Sci

January 2025

Department of Experimental Medicine, University of Salento, Via Provinciale Lecce-Monteroni n. 165, 73100 Lecce, Italy.

Peripherin belongs to heterogeneous class III of intermediate filaments, and it is the only intermediate filament protein selectively expressed in the neurons of the peripheral nervous system. It has been previously discovered that peripherin interacts with proteins important for the endo-lysosomal system and for the transport to late endosomes and lysosomes, such as RAB7A and AP-3, although little is known about its role in the endocytic pathway. Here, we show that peripherin silencing affects lysosomal abundance but also positioning, causing the redistribution of lysosomes from the perinuclear area to the cell periphery.

View Article and Find Full Text PDF

Polydiacetylenes (PDAs) are conjugated polymers that are well known for their colorimetric transition from blue to red with the application of energetic stimulus. Sensing platforms based on polymerized diacetylene surfactant vesicles and other structures have been widely demonstrated for various colorimetric biosensing applications. Although less studied and utilized, the transition also results in a change from a non-fluorescent to a highly fluorescent state, making polydiacetylenes useful for both colorimetric and fluorogenic sensing applications.

View Article and Find Full Text PDF

A Redox-Active Copper Complex for Orthogonal Detection of Homocysteine Involving Fluorescence and Electrochemical Techniques.

Small

January 2025

Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, 364002, India.

The present work reports the synthesis, characterization, and excited state photo-physical studies of two copper(II) compounds, 1 & 2, which show interference-free emission with homocysteine (Hcy). Cu(II) complexes offer an orthogonal detection strategy involving fluorescence and electrochemical methods, paving the way for improved point-of-care diagnostics and early cardiovascular diseases intervention. The reduction-induced emission enhancement (RIEE) of Cu complexes facilitates the fluorescence measurement of Hcy at physiological pH.

View Article and Find Full Text PDF

Human amylin, called also islet amyloid polypeptide (hIAPP), is the principal constituent of amyloid deposits in the pancreatic islets. Together with hyperglycemia, hIAPP-derived oligomers and aggregates are important culprits in type 2 diabetes mellitus (T2DM). Preventing aggregation, and in particular inhibiting the formation and/or stimulating degradation of toxic amylin oligomers formed early in the process, may reduce the negative effects of T2DM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!