Copper plays a key role in brain development, function and survival. Alteration of its homeostasis is suggested to be an aetiological factor in several neurodegenerative diseases. However, the molecular mechanisms relating copper to neurodegeneration are still unknown. In the present report, using morphological analyses of brain sections of mottled/brindled mutant (Mo(br/y)) mice, the animal model of the human genetic copper deficiency associated with neurodegeneration (Menkes' disease), we demonstrated that a high degree of apoptotic cells is present in the neocortex and in the hippocampus. Biochemical characterisation revealed decreased levels of copper content and of the activity of the mitochondrial copper-dependent enzyme cytochrome c oxidase. Copper, zinc-superoxide dismutase activity also shows a slight decrease, while no change was observed for glutathione content. Lower levels of ATP were also found, indicative of a copper-dependent impairment of energy metabolism. Changes appear to be specific for the brain, since no alterations in the activity of liver enzymes were found, although the level of copper was strongly decreased. We also tested biochemical factors involved in cell commitment to apoptosis. The expression of the anti-apoptotic protein Bcl-2, which plays a fundamental role in brain development and morphogenesis, was dramatically decreased and the levels of cytochrome c released from mitochondria into the cytosol were significantly increased. On the basis of these findings, we propose that down-regulation of Bcl-2 can cause neurodegeneration triggered by mitochondrial damage due to copper depletion during brain development in Mo(br/y) mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0306-4522(00)00562-5DOI Listing

Publication Analysis

Top Keywords

brain development
12
animal model
8
menkes' disease
8
role brain
8
mobr/y mice
8
decreased levels
8
copper
7
brain
5
neurodegeneration
4
neurodegeneration animal
4

Similar Publications

Background: eHealth interventions constitute a promising approach to disease prevention, particularly because of their ability to facilitate lifestyle changes. Although a rather recent development, eHealth interventions might be able to promote brain health and reduce dementia risk in older adults.

Objective: This study aimed to explore the perspective of general practitioners (GPs) on the potentials and barriers of eHealth interventions for brain health.

View Article and Find Full Text PDF

Significance of birth in the maintenance of quiescent neural stem cells.

Sci Adv

January 2025

Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.

Birth is one of the most important life events for animals. However, its significance in the developmental process is not fully understood. Here, we found that birth-induced alteration of glutamine metabolism in radial glia (RG), the embryonic neural stem cells (NSCs), is required for the acquisition of quiescence and long-term maintenance of postnatal NSCs.

View Article and Find Full Text PDF

Humans excel at applying learned behavior to unlearned situations. A crucial component of this generalization behavior is our ability to compose/decompose a whole into reusable parts, an attribute known as compositionality. One of the fundamental questions in robotics concerns this characteristic: How can linguistic compositionality be developed concomitantly with sensorimotor skills through associative learning, particularly when individuals only learn partial linguistic compositions and their corresponding sensorimotor patterns? To address this question, we propose a brain-inspired neural network model that integrates vision, proprioception, and language into a framework of predictive coding and active inference on the basis of the free-energy principle.

View Article and Find Full Text PDF

Background: Recent studies have demonstrated a greater risk of dementia in female veterans compared to civilians; with the highest prevalence noted for former service women with a diagnosis of psychiatric (trauma, alcoholism, depression), and/or a physical health condition (brain injury, insomnia, diabetes). Such findings highlight the need for increased and early screening of medical and psychiatric conditions, and indeed dementia, in the female veteran population. Further, they call for a better understanding of the underlying biopsychosocial mechanisms that might confer heightened risk for female veterans, to tailor preventative and interventional strategies that support brain health across the lifespan.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) has long been a leading cause of death and disability, yet research has failed to successfully translate findings from the pre-clinical, animal setting into the clinic. One factor that contributes significantly to this struggle is the heterogeneity observed in the clinical setting where patients present with injuries of varying types, severities, and comorbidities. Modeling this highly varied population in the laboratory remains challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!