The Ser-Thr kinase Akt is activated in epithelial cells by Salmonella enterica serovar typhimurium. The bacterial effector SigD, which is translocated into host cells via the specialized type III secretion system, is essential for Akt activation. Here, we investigated the inositol phospholipid substrate preferences of SigD. Recombinant SigD preferentially dephosphorylated phosphatidylinositol 3,5-biphosphate and phosphatidylinositol 3,4,5-triphosphate over other phosphatidylinositol lipids. Phosphatidylinositol 3-phosphate was not a substrate, suggesting the 5' phosphate moiety is one of the preferred substrates. Database searches revealed that SigD bears a small region of homology to the mammalian type II inositol 5-phosphatase synaptojanin. Mutation of two conserved residues in this region, Lys527 and Lys530, decreased or abrogated phosphatase activity, respectively. The Shigella flexneri SigD homologue, IpgD, displayed a similar activity in vitro and also activated Akt when used to complement a DeltasigD Salmonella strain. A mutation in IpgD at Lys507, analogous to Lys530 of SigD, also failed to activate Akt. Thus, we have characterized a region near the carboxyl-terminus of SigD which is important for phosphatase activity. We discuss how dephosphorylation of inositol phospholipids by SigD in vivo might contribute to the activation of Akt.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0014-5793(01)02356-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!