Populations of control, C, and glutathione peroxidase-1 (GPx-1) knockout mice, K, were studied over a period of 2 years. No significant difference was observed between the C and K populations with respect to longevity, vitality, weight, lens biochemistry or morphology based on light and electron microscopy. It was concluded that under normal animal room barrier facilities, GPx-1 is not required. Furthermore, C and K lenses placed in organ culture and observed over a 24 hr period were indistinguishable. Organ cultured C lenses degraded medium H(2)O(2)levels at only a slightly greater rate than K lenses and this did not appear to change with age. However, tertiary butyl hydroperoxide (TBHP) was degraded less effectively by K lenses and this deficiency increased with age. No indication of change in redox non-protein SH (equivalent to GSH) status was observed between C and K whole lenses or epithelial cell fractions. With H(2)O(2)stress, the drop in C and K non-protein SH was comparable and there was little change with age. Examination of the impact of photochemical stress with 1.5 microM riboflavin and 4% O(2)upon choline transport indicated considerable damage with both C and K lenses, but little difference between the two populations until 1 or 2 years of age when the K lenses appear more vulnerable. With TBHP, the detrimental effect on the K lenses is greater and is observed earlier than with photochemical stress suggesting that the K lens membrane function is more susceptible to phospholipid hydroperoxide stress than are C lenses. Light and electron microscopy of the oxidative stressed lenses indicates significant damage which was generally somewhat greater in the K lenses. TBHP was a more potent oxidant than photochemically generated oxidants particularly at the anterior pole. The overall results suggest that under normal conditions, at any age, the lens does not require the presence of GPx-1 but depending on the type of oxidative stress, the enzyme may significantly contribute to its defense and this dependency may increase with age.

Download full-text PDF

Source
http://dx.doi.org/10.1006/exer.2001.0980DOI Listing

Publication Analysis

Top Keywords

lenses
11
oxidative stress
8
light electron
8
electron microscopy
8
lenses appear
8
change age
8
photochemical stress
8
age
6
stress
5
aging glutathione
4

Similar Publications

Perovskite-Based Smart Eyeglasses as Noncontact Human-Computer Interaction.

Adv Mater

January 2025

Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100080, P. R. China.

More than 70% of human information comes from vision. The eye is one of the most attractive sensing sites to collect biological parameters. However, it is urgent to develop a cost-effective and easy-to-use approach to monitor eyeball information in a minimally invasive way instead of current smart contact lenses or camera-based eyeglasses.

View Article and Find Full Text PDF

Importance: For myopia control to be beneficial, it would be important that the benefit of treatment (slowed eye growth) is not lost because of faster than normal growth (rebound) after discontinuing treatment.

Objective: To determine whether there is a loss of treatment effect (rebound) after discontinuing soft multifocal contact lenses in children with myopia.

Design, Setting, And Participants: The Bifocal Lenses in Nearsighted Kids 2 (BLINK2) cohort study involved children with myopia (aged 11-17 years at BLINK2 baseline) who completed the BLINK Study randomized clinical trial.

View Article and Find Full Text PDF

Purpose: Severely myopic eyes have been associated with high posterior capsule opacification (PCO) incidence. Although it has been reported that myopic eyes have weaker or more delayed capsule adhesion than emmetropic eyes, it is unclear whether/how dioptric power and posterior curvature of IOLs affect IOLs' affinity for the posterior lens capsule (PLC) and their PCO potential.

Methods: To investigate this, acrylic foldable IOLs with increasing dioptric power of 6.

View Article and Find Full Text PDF

Intraocular lens calculation formula selection for short eyes: based on axial length and anterior chamber depth.

BMC Ophthalmol

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China.

Purpose: To evaluate the predictive accuracy of 11 intraocular lens (IOL) calculation formulas in eyes with an axial length (AL) less than 22.00 mm.

Methods: New-generation formulas (Barrett Universal II [BUII], Emmetropia Verifying Optical [EVO] 2.

View Article and Find Full Text PDF

Convergent-beam attosecond x-ray crystallography.

Struct Dyn

January 2025

Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.

Sub-ångström spatial resolution of electron density coupled with sub-femtosecond to few-femtosecond temporal resolution is required to directly observe the dynamics of the electronic structure of a molecule after photoinitiation or some other ultrafast perturbation, such as by soft X-rays. Meeting this challenge, pushing the field of quantum crystallography to attosecond timescales, would bring insights into how the electronic and nuclear degrees of freedom couple, enable the study of quantum coherences involved in molecular dynamics, and ultimately enable these dynamics to be controlled. Here, we propose to reach this realm by employing convergent-beam x-ray crystallography with high-power attosecond pulses from a hard-x-ray free-electron laser.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!