Effects of whirling disease on selected hematological parameters in rainbow trout.

J Wildl Dis

National Fish Health Research Laboratory, Leetown Science Center, U.S. Geological Survey, Kearneysville, West Virginia 25430, USA.

Published: April 2001

Hematological responses to whirling disease in rainbow trout (Oncorhynchus mykiss) were investigated. Two-mo-old fingerling rainbow trout were exposed to cultured triactinomyxon spores of Myxobolus cerebralis at 9,000 spores/fish in December, 1997. Twenty-four wks post-exposure, fish were taken from infected and uninfected groups for peripheral blood and cranial tissue sampling. Histological observations on cranial tissues confirmed M. cerebralis infection in all exposed fish. Differences in hematological parameters between the two groups included significantly lower total leukocyte and small lymphocyte counts for the infected fish. No effects on hematocrit, plasma protein concentration, or other differential leukocyte counts were noted.

Download full-text PDF

Source
http://dx.doi.org/10.7589/0090-3558-37.2.375DOI Listing

Publication Analysis

Top Keywords

rainbow trout
12
whirling disease
8
hematological parameters
8
effects whirling
4
disease selected
4
selected hematological
4
parameters rainbow
4
trout hematological
4
hematological responses
4
responses whirling
4

Similar Publications

Today, active packaging has become essential to increase food safety and decrease food spoilage. In this study, the aim was to delay spoilage and increase the shelf life of rainbow fish fillets with a new hybrid nanocomposite active packaging. Packaging was fabricated with Ethylene vinyl acetate and active compounds such as rosemary extract, zinc oxide nanoparticles, and modified iron (Fe-MMT).

View Article and Find Full Text PDF

Given the need to reduce animal testing for environmental risk assessment, we aim to develop a fish invitrome, an alternative fish modular framework capable of predicting chemical toxicity in fish without the use of animals. The central module of the framework is the validated RTgill-W1 cell line assay that predicts fish acute toxicity of chemicals (Organization for Economic Cooperation and Development Test Guideline (OECD TG) 249). Expanding towards prediction of chronic toxicity, the fish invitrome includes two other well-advanced modules for chemical bioaccumulation/biotransformation and inhibition of fish growth.

View Article and Find Full Text PDF

Human activities and climate change have significantly increased humic substances in freshwater ecosystems over the last few decades. This increase is particularly concerning during seasonal changes or after heavy rainfall, when concentrations can easily increase up to tenfold. This phenomenon, known as "browning," has unknown consequences for aquatic organisms.

View Article and Find Full Text PDF

Advancing in vitro systems to address the effects of chemical pollution requires a thorough characterization of their functionalities, such as their repertoire of biotransformation enzymes. Currently, knowledge regarding the presence, activity magnitudes, and inducibility of different biotransformation pathways in vitro is scarce, particularly across organs. We report organ-specific kinetics for phase I and II biotransformation enzymes, under basal and induced conditions, in two in vitro systems using salmonid fish: S9 sub-cellular fractions from brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) were compared with rainbow trout cell lines.

View Article and Find Full Text PDF

Vibriosis caused by Vibrio anguillarum has been an important bacterial disease in cultured rainbow trout (Oncorhynchus mykiss). In the present study, we evaluated the protective efficacy of a vaccine that consists of formalin-killed (FK) V. anguillarum and the alr genes knockout auxotrophic-live (AL) V.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!