The activity of dehydrogenase of succinate, lactate, glutamate, malate (NAD- and NADP dependent), alpha-glycerophosphate (NAD-dependent), glucoso-6-phosphate, NAD- and NADP-dyaphorase was studied in adult and old rats with the help of histoenzymatic methods in normal cardiac fibroblasts and under conditions of reparative regeneration developing in the places of foci of myocardial micronecroses caused by administration of adrenaline. Analysis of the activity of enzymes in normal fibroblasts revealed the predominance therein of an anaerobic way of metabolism. In the process of reparative regeneration the level of metabolism of fibroblasts rose with inclusion of the acitvity of pentose shunt and Krebs' cycle. No age differences in the activity of enzymes under study were revealed. The data obtained are discussed in connection with the problem of ascertaining inter-enzymatic relationships ensuring metabolism of the connective tissue in the process of its maturation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

reparative regeneration
8
activity enzymes
8
[histoenzymatic characteristics
4
fibroblasts
4
characteristics fibroblasts
4
fibroblasts organization
4
organization myocardial
4
myocardial micronecroses]
4
micronecroses] activity
4
activity dehydrogenase
4

Similar Publications

Purpose: Corneal alkali burns are severe ocular injuries characterized by intense inflammation, tissue damage, and vision impairment, with current treatments often insufficient in restoring corneal function and clarity. This study aimed to evaluate the therapeutic effects of recombinant thrombomodulin domain 1 (rTMD1) in the treatment of corneal alkali burns, focusing on its impact on inflammation, tissue repair, fibrosis, and neovascularization.

Methods: A murine model of corneal alkali burn was utilized to investigate the therapeutic potential of rTMD1.

View Article and Find Full Text PDF

Bone tissue regeneration presents a significant challenge in clinical treatment due to inadequate coordination between implant materials and reparative cells at the biomaterial-bone interfaces. This gap underscores the necessity of enhancing interaction modulation between cells and biomaterials, which is a crucial focus in bone tissue engineering. Metal-polyphenolic networks (MPN) are novel inorganic-organic hybrid complexes that are formed through coordination interactions between phenolic ligands and metal ions.

View Article and Find Full Text PDF

A mini-invasive injectable hydrogel for temporomandibular joint osteoarthritis: Its pleiotropic effects and multiple pathways in cartilage regeneration.

Biomater Adv

December 2024

Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, PR China. Electronic address:

There are two bottlenecks in the treatment of TMJOA (temporomandibular joint osteoarthritis): ① lacking of easy-to-use repairing materials for damaged condylar cartilage; ② local inflammation interfering with in situ regeneration. In response to them, we constructed a biomimetic tilapia type I gelatin/hyaluronic acid (TGI/HA) hydrogel in this paper. It was endowed with the capability to immunoregulate mircoenvironment and concurrently induce regeneration in multiple ways.

View Article and Find Full Text PDF
Article Synopsis
  • The NLRP3 inflammasome is important in liver diseases, but its specific function in liver regeneration is not well understood.
  • In a study with mice undergoing partial hepatectomy, it was found that inhibiting or removing NLRP3 improved liver regeneration, while increasing its levels hindered recovery.
  • The benefits of NLRP3 depletion are linked to the activation of certain macrophages, and using drugs to inhibit NLRP3 showed promise in improving liver regeneration, especially in mice on a high-fat diet.
View Article and Find Full Text PDF

miR-181a/MSC-Loaded Nano-Hydroxyapatite/Collagen Accelerated Bone Defect Repair in Rats by Targeting Ferroptosis Pathway.

J Funct Biomater

December 2024

Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.

: The reparative regeneration of jawbone defects poses a significant challenge within the field of dentistry. Despite being the gold standard, autogenous bone materials are not without drawbacks, including a heightened risk of postoperative infections. Consequently, the development of innovative materials that can surpass the osteogenic capabilities of autologous bone has emerged as a pivotal area of research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!