Nature of phase transitions in a probabilistic cellular automaton with two absorbing states.

Phys Rev E Stat Nonlin Soft Matter Phys

Dipartimento di Matematica Applicata, Università di Firenze, via Santa Marta 3, I-50139 Florence, Italy.

Published: April 2001

We present a probabilistic cellular automaton with two absorbing states, which can be considered a natural extension of the Domany-Kinzel model. Despite its simplicity, it shows a very rich phase diagram, with two second-order and one first-order transition lines that meet at a bicritical point. We study the phase transitions and the critical behavior of the model using mean field approximations, direct numerical simulations and field theory. The second-order critical curves and the kink critical dynamics are found to be in the directed percolation and parity conservation universality classes, respectively. The first-order phase transition is put in evidence by examining the hysteresis cycle. We also study the "chaotic" phase, in which two replicas evolving with the same noise diverge, using mean field and numerical techniques. Finally, we show how the shape of the potential of the field-theoretic formulation of the problem can be obtained by direct numerical simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.63.046116DOI Listing

Publication Analysis

Top Keywords

phase transitions
8
probabilistic cellular
8
cellular automaton
8
automaton absorbing
8
absorbing states
8
direct numerical
8
numerical simulations
8
nature phase
4
transitions probabilistic
4
states probabilistic
4

Similar Publications

In-pixel foreground and contrast enhancement circuits with customizable mapping.

Sci Rep

January 2025

Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, 37996, USA.

This paper presents an in-pixel contrast enhancement circuit that performs image processing directly within the pixel circuit. The circuit leverages HyperFET, a hybrid device combining a MOSFET and a phase transition material (PTM), to enhance performance. It can be tuned for different modes of operation.

View Article and Find Full Text PDF

Vanadium dioxide ([Formula: see text]) is a favorable material platform of modern optoelectronics, since it manifests the reversible temperature-induced insulator-metal transition (IMT) with an abrupt and rapid changes in the conductivity and optical properties. It makes possible applications of such a phase-change material in the ultra-fast optoelectronics and terahertz (THz) technology. Despite the considerable interest to this material, data on its broadband electrodynamic response in different states are still missing in the literature.

View Article and Find Full Text PDF

Although microporous carbons can perform well for CO2 separations under high pressure conditions, their energy-demanding regeneration may render them a less attractive material option. Here, we developed a large-pore mesoporous carbon with pore sizes centered around 20-30 nm using a templated technical lignin. During the soft-templating process, unique cylindrical supramolecular assemblies form from the copolymer template.

View Article and Find Full Text PDF

Electromagnetism and thermostability of CrCsynthesised with high-temperature and high-pressure quenching method.

J Phys Condens Matter

January 2025

Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China, Ningbo, Zhejiang, 315211, CHINA.

The interactions between the carbon skeleton and the metal atoms of a binary transition metal carbide (BTMC) are particular interest for industrial applications with openning physics and chemitry questions, especially in magnetoelectric (ME) functional materials and cemented carbides. Chromium and carbon BTMCs are a series of intermetallic compounds with typical chemical formulas and sharepolycrystalline powder c somehromium special characteristics.and carbon as precursors, In this paper,and synthesized s we usedingle-phase bluk Cr7C3 (orthorhombic, with space group: Pnma) with high density and good crystallinity by means of high-temperature and high-pressure quenching method (HTHPQM).

View Article and Find Full Text PDF

Enhancing the ferroelectric performance of HfZrOfilms by optimizing the incorporation of Al dopant.

Nanotechnology

January 2025

School of Electrical Engineering, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xianning West Road No.28 Xi'an Shannxi Province, Xi'an, Shaanxi, 710049, CHINA.

HfO-based ferroelectric (FE) thin films have gained considerable interest for memory applications due to their excellent properties. However, HfO₂-based FE films face significant reliability challenges, especially the wake-up and fatigue effects, which hinder their practical application. In this work, we fabricated 13.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!