Lactation alters gamma-aminobutyric acid neuronal activity in the hypothalamus and cerebral cortex in the rat.

Neuroendocrinology

Department of Anatomy and Structural Biology, School of Medical Sciences and Neuroscience Research Centre, University of Otago, PO Box 913, Dunedin, New Zealand.

Published: March 2001

Gamma-aminobutyric acid (GABA) neurons terminating in the hypothalamus have been implicated in the neuroendocrine regulation of reproductive hormones, particularly luteinizing hormone (LH) and prolactin. The aim of this study was to examine whether GABAergic neuronal activity in the hypothalamus was modified during lactation, and whether any observed changes correlated with changes in secretion of these hormones. Animals were divided into three experimental groups: diestrous controls, lactating with pups present (with pups), and lactating with pups removed for 4 h (without pups). Animals were decapitated either without treatment, or 60 min after inhibition of GABA degradation by aminooxyacetic acid (AOAA) (100 mg/kg, i.p.). The rate of GABA accumulation in the tissue after AOAA is a measure of GABA turnover. GABA turnover was estimated in 13 microdissected brain regions, and serum prolactin and LH measured by radioimmunoassay. Suckling was associated with significantly increased prolactin and significantly decreased LH compared with diestrous rats. In lactating rats with pups, GABA turnover was significantly increased in the cingulate cortex compared with diestrous rats. GABA turnover was significantly increased in the ventrolateral preoptic nucleus of lactating rats with pups compared with diestrous rats or lactating rats without pups. There was significantly lower GABA turnover in the anterior hypothalamic area, ventromedial and dorsomedial hypothalamic nuclei in lactating rats without pups compared with diestrous rats. There were no significant changes in other brain regions examined. The results demonstrate that activity of GABAergic neurons in specific parts of the hypothalamus and cerebral cortex is altered during lactation.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000054634DOI Listing

Publication Analysis

Top Keywords

gaba turnover
20
compared diestrous
16
diestrous rats
16
lactating rats
16
rats pups
16
gamma-aminobutyric acid
8
neuronal activity
8
activity hypothalamus
8
hypothalamus cerebral
8
cerebral cortex
8

Similar Publications

Clinical symptoms of Parkinson's disease (PD) are classified into motor and non-motor symptoms. Mental disorders, especially depression, are one of the major non-motor manifestations of PD. However, the underlying mechanisms remain poorly understood.

View Article and Find Full Text PDF

Background: Magnetic resonance spectroscopy (MRS) is an imaging technique used to measure metabolic changes in the tissue. Due to the lack of evidence, MRS is not a priority in diagnosing neurodegenerative diseases because it is a relatively specialized technique that requires specialized equipment and expertise to perform and interpret. This systematic review aimed to present a comprehensive collection of MRS results in the most common neurodegenerative diseases.

View Article and Find Full Text PDF

Multitissue transcriptomics demonstrates the systemic physiology of methionine deficiency in broiler chickens.

Animal

May 2024

Animal Nutrition Research, Evonik Operations GmbH, Hanau Germany. Electronic address:

Methionine (Met) supplementation is common practice in broilers to support nutrition, yet there are gaps in the understanding of its role in systemic physiology. Furthermore, several different Met sources are available that may have different physiological effects. This study evaluated the mode of action of Met deficiency (no Met-supplementation) and supplementation (0.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is an onset and incurable neurodegenerative disorder that has been linked to various genetic, environmental, and lifestyle factors. Recent research has revealed several potential targets for drug development, such as the prevention of Aβ production and removal, prevention of tau hyperphosphorylation, and keeping neurons alive. Drugs that target numerous ADrelated variables have been developed, and early results are encouraging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!