G protein-coupled receptors can stimulate the p38 kinase cascade, but the effect this has on cell growth remains poorly characterized. Here we show human somatostatin sst(2) and sst(4) receptors inhibit basic fibroblast growth factor (bFGF)-induced proliferation, via a mechanism that was blocked by the p38 inhibitor PD 169316. The sst(4) receptor could also induce a proliferative activity in the absence of bFGF, which was unaffected by PD 169316. In contrast, the sst(3) receptor had no effect on basal cell growth or on the proliferation evoked by bFGF. The extracellular signal-regulated kinase activity stimulated by the sst(3) receptor was transient in duration compared with a sustained activity induced by the sst(2) and sst(4) receptors and which was critical for the proliferative response of the latter receptor. In addition, activated sst(2) and sst(4) but not sst(3) receptors evoked a prolonged phosphorylation of p38 that was amplified by bFGF. The accumulation of the cell cycle inhibitor p21(cip1) was only apparent after sst(2) and sst(4) receptor activation in the presence of bFGF, which was sensitive to PD 169316 or pertussis toxin. Thus, the contrasting antiproliferative effects evoked by the human sst(2), sst(3), and sst(4) receptors can be accounted for by their differential abilities to activate p38. This activity is critical for p21(cip1) induction, blockade of entry into S phase, as indicated by the lack of retinoblastoma protein phosphorylation, and the associated antiproliferative activity of somatostatin. Furthermore, by changing the intracellular signaling threshold of p38 through cooperative effects of somatostatin and bFGF, the sst(4) receptor can mediate opposing effects on cell proliferation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/mol.59.5.1119 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!