The tricyclic carboxamide N-[2-(dimethylamino)ethyl]acridine-4-carboxamide (DACA) is a DNA-intercalating agent capable of inhibiting both topoisomerases I and II and is currently in Phase II clinical trial. Many related analogues have been developed, but despite their potent in vitro cytotoxicities, they exhibit poor extravascular distribution. As part of an ongoing drug development program to obtain related "minimal intercalators" with lower DNA association constants, we have compared the biodistribution and metabolite profiles of the prototype compound, DACA, with three analogues to aid rational drug selection. All of these compounds share a common structural feature, N-dimethyl side chain, which was radiolabeled with the positron-emitting radioisotope, carbon-11. This strategy was selected because it allows promising candidates emerging from preclinical studies in animals to be evaluated rapidly in humans using positron emission tomography (PET). The acridine DACA, the phenazine SN 23490, the pyridoquinoline SN 23719, and the dibenzodioxin SN 23935 were found to be cytotoxic in in vitro assays with an IC50 of 1.4-1.8 microM, 0.4-0.6 microM, 1.3-1.6 microM, and 24-36 microM, respectively, in HT29, U87MG, and A375M cell lines. Ex vivo biodistribution studies with carbon-11 radiolabeled compounds in mice bearing human tumor xenografts showed rapid clearance of 11C-radioactivity (parent drug and metabolites) from blood and the major organs. Rapid hepatobiliary clearance and renal excretion were also observed. There was low [<5% of injected dose/gram (%ID/g)] and variable uptake of 11C-radioactivity in three tumor types for all of the compounds. Tumor (U87MG) to blood 11C-radioactivity for [11C]DACA, [11C](9-methoxyphenazine-1-carboxamide (SN 23490), [11C]2-(4-pyridyl)quinoline-8-carboxamide (SN 23719), and [11C]dibenzo[1,4]dioxin-1-carboxamide (SN 23935) at 30 min were 2.9 +/- 1.1, 2.3 +/- 0.6, 2.6 +/- 0.6, and 0.7 +/- 0.2, respectively. For SN 23719, the distribution of 11C-radioactivity in normal tissues and tumors determined ex vivo was in broad agreement with that determined in vivo by whole body PET scanning. [11C]DACA was rapidly and extensively metabolized to several plasma metabolites and a major tumor metabolite. In contrast, [11C]SN 23935, [11C]SN 23490, and [11C]SN 23719 showed less extensive metabolism. In the tumor samples, the parent [11C]DACA and [11C]SN 23935 represented between 0.3 and 1.5%ID/g, whereas [11C]SN 23490 and [11C]SN 23719 represented between 1.5 and 2.8%ID/g. In conclusion, by using a strategy with 11C-labeling, we have determined the tissue distribution and metabolic stability of novel tricyclic carboxamides with the view of selecting analogues with potentially better in vivo activity against solid tumors. SN 23490 and SN 23719 had more favorable distribution and metabolic stability compared with DACA and SN 23935 and may warrant further development. The radiolabeling strategy used allows ex vivo and in vivo evaluation of promising anticancer agents in animals and offers the potential of rapid translation to studies in humans using PET.
Download full-text PDF |
Source |
---|
Nat Nanotechnol
January 2025
Global Regulatory Affairs CMC, Sanofi, Marcy-l'Etoile, France.
Lipid nanoparticles (LNPs) for nucleic acid delivery often use novel lipids as functional excipients to modulate the biodistribution, pharmacokinetics, pharmacodynamics and efficacy of the nucleic acid. Novel excipients used in pharmaceutical products are subject to heightened regulatory scrutiny and often require data packages comparable to an active pharmaceutical ingredient. Although these regulatory requirements may help to ensure patient safety they also create economic and procedural barriers that can disincentivize innovation and delay clinical investigation.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States.
With increasing prevalence globally, obesity presents unique challenges to the clinical management of other diseases. In the case of acute respiratory distress syndrome (ARDS), glucocorticoid therapy (e.g.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States.
Gut dysbiosis contributes to multiple pathologies, yet the mechanisms of the gut microbiota-mediated influence on systemic and distant responses remain largely elusive. This study aimed to identify the role of nanosized bacterial extracellular vesicles (bEVs) in mediating allodynia, i.e.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
School of Medicine, Shanghai University, Shanghai 200444, China.
Noninvasive imaging of β-amyloid is pivotal for the early diagnosis of Alzheimer's disease (AD). While single imaging methods have been extensively studied for detecting Aβ over the past decade, dual-modal probes have received scant attention. In this study, we synthesized and assessed a series of half-curcumin probes, among which demonstrated a high affinity and selectivity for Aβ aggregates.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, India.
Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.
Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!