Nitric oxide (NO) and related molecules play important roles in vascular biology. NO modifies proteins through nitrosylation of free cysteine residues, and such modifications are important in mediating NO's biologic activity. Tissue transglutaminase (tTG) is a sulfhydryl rich protein that is expressed by endothelial cells and secreted into the extracellular matrix (ECM) where it is bound to fibronectin. Tissue TG exhibits a Ca(2+)-dependent transglutaminase activity (TGase) that cross-links proteins involved in wound healing, tissue remodeling, and ECM stabilization. Since tTG is in proximity to sites of NO production, has 18 free cysteine residues, and utilizes a cysteine for catalysis, we investigated the factors that regulated NO binding and tTG activity. We report that TGase activity is regulated by NO through a unique Ca(2+)-dependent mechanism. Tissue TG can be poly-S-nitrosylated by the NO carrier, S-nitrosocysteine (CysNO). In the absence of Ca(2+), up to eight cysteines were nitrosylated without modifying TGase activity. In the presence of Ca(2+), up to 15 cysteines were found to be nitrosylated and this modification resulted in an inhibition of TGase activity. The addition of Ca(2+) to nitrosylated tTG was able to trigger the release of NO groups (i.e. denitrosylation). tTG nitrosylated in the absence of Ca(2+) was 6-fold more susceptible to inhibition by Mg-GTP. When endothelial cells in culture were incubated with tTG and stimulated to produce NO, the exogenous tTG was S-nitrosylated. Furthermore, S-nitrosylated tTG inhibited platelet aggregation induced by ADP. In conclusion, we provide evidence that Ca(2+) regulates the S-nitrosylation and denitrosylation of tTG and thereby TGase activity. These data suggest a novel allosteric role for Ca(2+) in regulating the inhibition of tTG by NO and a novel function for tTG in dispensing NO bioactivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi002321t | DOI Listing |
Int J Biol Macromol
January 2025
College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China. Electronic address:
Micelle systems using safe food-grade biopolymers are of particular interest for the encapsulation and delivery of nutrition components. Micellar casein (MC) was assembled using transglutaminase (TGase) to couple with phosphoserine peptide, which enhance the stability of docosahexaenoic acid (DHA) from algae oil. The mechanism behind the construction of MC-phosphoserine peptide and the encapsulation of DHA was explored.
View Article and Find Full Text PDFPhytopathology
January 2025
Swedish University of Agricultural Sciences, Plant Protection Biology, Alnarp, Sweden;
Transglutaminases (TGases) are enzymes highly conserved among prokaryotic and eukaryotic organisms, where their role is to catalyze protein cross-linking. One of the putative TGases of has previously been shown to be localized to the cell wall. Based on sequence similarity we were able to identify six more genes annotated as putative TGases and show that these seven genes group together in phylogenetic analysis.
View Article and Find Full Text PDFFront Vet Sci
December 2024
College of Medicine, Yichun University, Yichun, China.
serotype 2 ( type 2, SS2) is one of the zoonotic pathogens known to induce meningitis, septicemia, and arthritis in both pigs and humans, resulting in public health concerns. CbpD, also termed CrfP, is one of the choline-binding proteins (CBPs) that was found as a murein hydrolase in SS2 and plays crucial roles in natural genetic transformation under the control of ComRS-ComX regulatory system by a previous study. Nonetheless, the possible functions of CbpD in virulence and pathogenesis in SS2 remain unclear.
View Article and Find Full Text PDFFoods
December 2024
State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China.
The objective of this study was to formulate Pickering emulsions stabilized by transglutaminase cross-linked mulberry leaf protein (TG-MLP) nanoparticles as a delivery system for curcumin (Cur) and to assess its bioaccessibility both in vivo and in vitro. The encapsulation efficiency of curcumin in high-internal-phase Pickering emulsions (HIPEs) prepared at pH 10 with a 20 mg/mL concentration of TG-MLP reached 93%. Compared to Oil-Cur, Cur-HIPEs exhibited superior antioxidant activity.
View Article and Find Full Text PDFFood Res Int
December 2024
Department of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China. Electronic address:
This study aimed to prepare novel nanocomplexes for delivery of lutein using transglutaminase (TGase)-type glycation of casein. The effect of glycated casein nanoparticles on the environmental stability, bioavailability, and antioxidant properties of lutein was investigated. Glycated casein nanoparticles with uniform distribution and small particle size were successfully prepared by ultrasound technology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!