The effect of postnatal age on L-2-chloropropionic acid-induced cerebellar granule cell necrosis in the rat.

Arch Toxicol

Zeneca Central Toxicology Laboratory, Alderley Park, Macclesfield, Cheshire, UK.

Published: February 2001

L-2-Chloropropionic acid (L-2-CPA) selectively damages the cerebellum in adult rats. The rat cerebellum continues to develop postnatally during the first 4 weeks of life. In this study we examined the neurotoxic effect on rats of increasing postnatal age. Daily oral dosing of rats aged 56 days with 250 mg/kg per day of L-2-CPA for 3 days produced necrosis to neurons in the cerebellar granule cell layer and to neurons in the medial/ventral region of the habenular nucleus. Rats aged 22 days were resistant to the cerebellar toxicity while rats aged 32 days and older were sensitive. A single large oral dose of 500 or 750 mg/kg L-2-CPA produced no clinical signs of neurotoxicity or lesions in the cerebellum 48 h after dosing in 22-day-old rats. Daily dosing of 22-day-old rats at 250 mg/kg per day L-2-CPA for 10 days also produced no signs of neurotoxicity or reduction in body weight gain, although histological examination of the brain revealed slight neuronal cell necrosis in the granule cell layer of the cerebellum with a minimal effect in the medial/ventral region of the habenular nucleus. In contrast, daily dosing of rats aged 32, 38, 48 and 58 days with 250 mg/kg per day of L-2-CPA for 3 days produced clear signs of neurotoxicity which were associated with reduced body weight gain and loss of hindlimb function. In these rats there was clear evidence of neuronal cell loss in the cerebellar granule cell layer and medial/ventral region of the habenular nucleus. This study showed that the postnatal developing cerebellum is resistant to L-CPA-induced injury in rats up to 25 days of age, but becomes vulnerable to the toxicity by 32 days of age. The basis for the resistance of the developing cerebellum to L-CPA is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s002040000194DOI Listing

Publication Analysis

Top Keywords

granule cell
16
rats aged
16
aged days
16
cerebellar granule
12
250 mg/kg
12
mg/kg day
12
day l-2-cpa
12
l-2-cpa days
12
days produced
12
cell layer
12

Similar Publications

Type 1 Diabetes (T1D) is an autoimmune disease mediated by autoreactive T cells. Our studies indicate that CD4 T cells reactive to Hybrid Insulin Peptides (HIPs) play a critical role in T cell-mediated beta-cell destruction. We have shown that HIPs form in human islets between fragments of the C-peptide and cleavage products of secretory granule proteins.

View Article and Find Full Text PDF

Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings.

View Article and Find Full Text PDF

Objectives: To explore the mechanism of Granules (QDG) for alleviating brain damage in spontaneously hypertensive rats (SHRs).

Methods: Twelve 5-week-old SHRs were randomized into SHR control group and SHR+QDG group treated with QDG by gavage at the daily dose of 0.9 g/kg for 12 weeks.

View Article and Find Full Text PDF

Toxic-induced cerebellar syndrome (TOICS) poses substantial neurological challenges, given its diverse causes and complex manifestations. Gold nanoparticles (AuNPs) have gained significant attention owing to enhanced biocompatibility for therapeutic interventions. We aimed to investigate the impacts of AuNPs on cerebellar cytomolecular, immunohistochemical and ultrastructural alterations in the context of phenytoin-experimentally induced TOICS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!