Collisional activation of the intact MS2 viral capsid protein with subsequent ion/ion reactions has been used to identify the presence of this virus in E. coli lysates. Tandem ion trap mass spectrometry experiments on the +7, +8, and +9 charge states, followed by ion/ion reactions, provided the necessary sequence tag information (and molecular weight data) needed for protein identification via database searching. The most directly informative structural information is obtained from those charge states that produce a series of product ions arising from fragmentation at adjacent residues. The formation of these product ions via dissociation at adjacent amino acid residues depends greatly on the charge state of the parent ion. Database searching of the charge-state-specific sequence tags was performed by two different search engines: the ProteinInfo program from the Protein information Retrieval On-line World Wide Web Lab or PROWL and the TagIdent program from the ExPASy molecular biology server. These search engines were used in conjunction with the sequence tag information generated via collisional activation of the intact viral coat protein. These programs were used to evaluate the feasibility of generating sequence tags from collisional activation of intact multiply charged protein ions in a quadrupole ion trap.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac000725lDOI Listing

Publication Analysis

Top Keywords

collisional activation
16
activation intact
16
ion trap
12
coat protein
8
coli lysates
8
protein ions
8
ion/ion reactions
8
charge states
8
sequence tag
8
database searching
8

Similar Publications

Atomically precise clusters such as [Pt(CO)(PPh)] ( = 1,2) (PPh is triphenylphosphine) are known as precursors for making oxidation catalysts. However, the changes occurring to the cluster upon thermal activation during the formation of the active catalyst are poorly understood. We have used a combination of hybrid mass spectrometry and surface science to map the thermal decomposition of [Pt(CO)(PPh)](NO).

View Article and Find Full Text PDF

High-temperature non-equilibrium atom-diatom collisional energy transfer.

J Chem Phys

December 2024

Center for Combustion Energy, Tsinghua University, Beijing 100084, People's Republic of China.

The change of the vibrational energy within a molecule after collisions with another molecule plays an essential role in the evolution of molecular internal energy distributions, which is also the limiting process in the relaxation of gases toward equilibrium. Here, we investigate the energy transfer between the translational motion and the vibrational motion of the diatom during the atom-diatom collision, the simplest case involving the transfer between inter-molecular and intra-molecular energies. We are interested in the situation when the translational temperature of the gas is high, in which case, there are significant probabilities for the vibrational energy to change over widely separated energy levels after a collision.

View Article and Find Full Text PDF

Utilizing Quantum Cascade Lasers for Ultranarrow Velocity Resolution and Quantum-State Selectivity in Molecular Beam Scattering and Spectroscopy.

J Phys Chem Lett

December 2024

Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States.

We demonstrate the capability of a narrow linewidth quantum cascade laser (QCL) to selectively excite a very narrow velocity range of nitric oxide (σ ≤ 7(3) m/s) with a pure ro-vibrational quantum state. By implementing a counter-propagating geometry, the molecules are selectively excited according to the Doppler shift of the ro-vibrational transition frequency such that the velocity width associated with the excited molecules depends only on the QCL linewidth. We demonstrate a velocity distribution limited by the effective linewidth of our free-running QCL (Γ = 3.

View Article and Find Full Text PDF

The Role of Polo-Like Kinase 1 (PLK1) O-GlcNAcylation in Mitosis.

Methods Mol Biol

November 2024

Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China.

Polo-like kinase 1 (PLK1) is a crucial mitotic kinase that is implicated in various aspects of cell cycle. Many post-translational modifications have been identified on PLK1 to regulate its activation, stability, and localization. PLK1 has been shown previously to colocalize with the O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT), and OGT regulates PLK1 stability.

View Article and Find Full Text PDF

Native mass spectrometry analysis of proteins directly from tissues can be performed by using nanospray-desorption electrospray ionization (nano-DESI). Typically, supplementary collisional activation is essential to decluster protein complex ions from solvent, salt, detergent, and lipid clusters that comprise the ion beam. As an alternative, we have implemented declustering by infrared (IR) photoactivation on a linear ion trap mass spectrometer equipped with a CO laser (λ = 10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!