The intramolecular quenching of photoexcited triplet states by free radicals linked to peptide templates was studied by time-resolved electron paramagnetic resonance (EPR) with pulsed laser excitation. The systems investigated are 3(10)-helix forming peptides, having in the amino acid sequence the free radical 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) and a triplet precursor, such as Bin, Bpa, or Trp, incorporated at different relative positions. Upon interaction with the excited triplet the TOAC radical spin sublevel populations assume values that differ from the Boltzmann equilibrium values. This spin polarization effect produces EPR lines in emission whose time evolution reflects the triplet quenching rate. In particular, in a series of peptides labeled with Bpa and TOAC at successive positions in the 3(10)-helix, radical-triplet interaction was observed in all cases. However, for the peptide where Bpa and TOAC are at positions 2 and 4 the rate of triplet quenching is lower than for the other peptides in the series. In addition, the radical-excited triplet complex in the quartet spin state was observed in a peptide containing fullerene (C(60)) as a triplet precursor and TOAC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1097-0282(2000)55:6<486::AID-BIP1024>3.0.CO;2-C | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.
Hydrogen atom transfer (HAT) reactions and their kinetic barriers Δ are important in organic and inorganic chemistry. This study examines factors that influence Δ, reporting the kinetics and thermodynamics of HAT from various ruthenium bis(acetylacetonate) pyridine-imidazole complexes to nitroxyl radicals. Across these 36 reactions, the Δ and Δ can be independently varied, with different sets of Ru complexes primarily tuning either their ps or their °s.
View Article and Find Full Text PDFJ Mol Model
January 2025
College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, People's Republic of China.
Context: The rotating arc plasma technique for the synthesis of nitrogen-doped graphene capitalizes on the distinctive attributes of plasma, presenting a straightforward, efficient, and catalyst-free strategy for the production of nitrogen-doped graphene. However, experimental outcomes generally fail to elucidate the atomic-level mechanism behind this process. Our research utilizes molecular dynamics simulations to explore theoretically the formation of radicals during the plasma-driven reaction between methane (CH₄) and nitrogen (N₂).
View Article and Find Full Text PDFAnal Chem
January 2025
The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
Conventional dual-signal electrochemiluminescence (ECL) sensors feature high sensitivity and reliability, but the involvement of coreactants inevitably results in a complex configuration and shows reproducibility risk. Here, we propose an exogenous coreactant-free dual-signal platform, comprising luminol (anodic luminophore), CdSe quantum dots (cathodic luminophore), and CoO/TiC electrocatalyst (coreaction promoter). At different redox potentials, CoO/TiC induces water oxidation and oxygen reduction to produce OH and O radicals, which subsequently drive cathodic and anodic ECL emission, respectively.
View Article and Find Full Text PDFFront Public Health
January 2025
Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan.
Biodosimetry is crucial for assessing ionizing radiation exposure to guide medical responses. Electron spin resonance (ESR) spectroscopy using fingernails can be effectively used for both occupational and public dose assessments in radiological accidents because of their accessibility and ability to retain stable radiation-induced free radicals. However, despite two decades of research, challenges remain in achieving accurate fingernail dosimetry, mainly owing to the variation in ESR signals among individuals.
View Article and Find Full Text PDFJ Anus Rectum Colon
January 2025
Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.
Objectives: This study aimed to evaluate the safety and long-term outcomes of a one-stage resection and anastomosis approach without preoperative decompression in patients with left-sided incomplete obstructive colorectal cancer.
Methods: We conducted a retrospective analysis of 571 patients diagnosed with pT3-4NanyM0 left-sided colorectal cancer who underwent radical resection and primary anastomosis without preoperative decompression or a diverting stoma from April 2012 to December 2019. Of these, 97 (17%) patients presented with incomplete obstruction, while 474 (83%) had no obstruction.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!