Endothelium-dependent vasorelaxation is defective in hypertensive rats, especially in conduit arteries. In the stroke-prone spontaneously hypertensive rat, impaired endothelium-dependent vasorelaxation appears to contribute to the pathogenesis of stroke independent of blood pressure. Because treatment with lacidipine, a long-acting calcium channel blocker, protects against stroke and cardiovascular remodeling in this model, we investigated the effect of this treatment on endothelium-dependent vasorelaxation in the aorta. Stroke-prone rats were exposed to a salt-rich diet (1% NaCl in drinking water) with or without lacidipine (1 mg. kg(-1). d(-1)) for 6 weeks. A high-sodium diet (1) increased systolic blood pressure, aortic weight, and wall thickness and plasma renin activity (P<0.05); (2) markedly reduced nitric oxide (NO)-mediated, endothelium-dependent relaxation of aortic rings to acetylcholine and the sensitivity to the relaxing effect of S-nitroso-N-acetylpenicillamine, an NO donor (P<0.001); and (3) induced an elevation of preproendothelin-1 mRNA levels in aortic tissue (P<0.01) without affecting endothelial NO synthase mRNA levels. Lacidipine treatment prevented the salt-dependent functional and structural alterations of the aorta, including the overexpression of the preproendothelin-1 gene, and increased endothelial NO synthase mRNA levels in aortic tissue (P<0.01). In conclusion, lacidipine protects stroke-prone hypertensive rats against the impairment of endothelium-dependent vasorelaxation evoked by a salt-rich diet, and this effect may contribute to its beneficial effect against end-organ damage and stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.hyp.37.4.1124DOI Listing

Publication Analysis

Top Keywords

endothelium-dependent vasorelaxation
12
hypertensive rats
8
blood pressure
8
lacidipine prevents
4
prevents endothelial
4
endothelial dysfunction
4
dysfunction salt-loaded
4
salt-loaded stroke-prone
4
stroke-prone hypertensive
4
rats endothelium-dependent
4

Similar Publications

Background: There is compelling evidence of an inverse association between potassium intake and blood pressure (BP). A potential mechanism for this effect may be dietary potassium-mediated augmentation of endothelium-dependent relaxation. To date, studies have investigated potassium intake supplementation over several weeks in healthy volunteers with variable results on vascular function.

View Article and Find Full Text PDF

Bisphenol S induced endothelial dysfunction via mitochondrial pathway in the vascular endothelial cells, and detoxification effect of albumin binding.

Chem Biol Interact

January 2025

College of Chemistry and Materials, Key Laboratory of Green Catalysis of Jiangxi Education Institutes, Jiangxi Normal University, Nanchang, 330022, China. Electronic address:

As a replacement of bisphenol A, bisphenol S (BPS) is commonly used in the wrappers and food containers of daily life. Epidemiological studies demonstrate a close link between BPS exposure and vascular diseases, where the biological activities of BPS remain scarcely known. Herein, the effects of BPS on endothelial function as well as the underlying mechanism were investigated in human umbilical vein endothelial cells (HUVECs) and mouse arteries.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) is a gasotransmitter that modulates vascular tone, causing either vasodilation or vasoconstriction depending on the vascular bed, species, and experimental conditions. The cold-sensitive transient receptor potential ankyrin-1 (TRPA1) channel mediates HS-induced effects; however, its contribution to the vasomotor responses of different arteries at different temperatures has remained unclear. Here, we aimed to fill this gap by comparing the effects of sodium sulfide (NaS), which is a fast-releasing HS donor, on the isolated carotid and tail skin arteries of rats and mice at cold and normal body temperature with wire myography.

View Article and Find Full Text PDF

Cinnamic acid lowers blood pressure and reverses vascular endothelial dysfunction in rats.

J Food Drug Anal

December 2024

Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad-22060, KP, Pakistan.

Cinnamic acid (CA) possesses important cardiovascular effects such as cardioprotective, antiatherogenic, antihyperlipidemic and antioxidant, which predicts its potential role in the treatment of hypertension. The study was executed to investigate the antihypertensive potential of CA in Sprague Dawley (SD) rats followed by evaluation in diverse vascular preparations. Invasive blood pressure monitoring technique was used in normotensive and hypertensive rats, under anesthesia.

View Article and Find Full Text PDF

Vasorelaxant effect of fennel seeds (Foeniculum vulgare Mill) extracts on rat mesenteric arteries: Assessment of phytochemical profiling and antioxidant potential.

Fitoterapia

December 2024

Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health. Faculty of Sciences, Mohammed First University, Oujda, BP-717, 60000 Oujda, Morocco. Electronic address:

Ethnopharmacological Relevance: Hypertension is a serious health problems and a leading cause of adult mortality worldwide. Foeniculum. vulgare Mill, a plant traditionally used for various ailments, including cardiovascular disorders such as hypertension.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!