The authors examined the occurrence of neurofibrillary tangles (NFT), senile plaques, spheroids in Goll's nucleus, grumose or foamy spheroid bodies (GFSB) in the basal ganglia, and hyaline inclusions in the brainstem nuclei in 62 patients under 40 years of age with non-progressive developmental brain disorders. Five cases had demonstrated NFT, which tended to be confined to the subcortical nuclei, whereas no senile plaques were identified in any case. Spheroids in Goll's nucleus were significantly increased in three cases of congenital brain anomalies and five cases of perinatal hypoxic ischemic encephalopathy. The GFSB-positive subjects were clinicopathologically divided into two subgroups consisting of four cases of congenital malformations, which were also associated with severe respiratory failure, and six cases of perinatal brain disorders in which the basal ganglia were severely affected. Eosinophilic intracytoplasmic inclusions, unlike the hyaline inclusions of the Lewy type, were found in the substantia nigra and/or locus ceruleus in two subjects. It is speculated that a variety of mechanisms, including accelerated aging and anoxic insults, may be involved in the increased occurrence of NFT and/or spheroids in non-progressive developmental disorders. A detailed investigation is useful to clarify the neuronal changes secondary to the brain damages early in development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1440-1789.2001.00366.x | DOI Listing |
Annu Rev Chem Biomol Eng
January 2025
1Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; email:
Understanding the molecular, cellular, and physiological components of neurodegenerative diseases (NDs) is paramount for developing accurate diagnostics and efficacious therapies. However, the complexity of ND pathology and the limitations associated with conventional analytical methods undermine research. Fortunately, microfluidic technology can facilitate discoveries through improved biomarker quantification, brain organoid culture, and small animal model manipulation.
View Article and Find Full Text PDFN Engl J Med
January 2025
From the National Surgical Adjuvant Breast and Bowel Project (NSABP) Foundation (C.E.G., E.P.M., N.W., P.R., I.L.W., A.M.B.) and University of Pittsburgh School of Medicine-UPMC Hillman Cancer Center (C.E.G., N.W., P.R., A.M.B.) - both in Pittsburgh; AGO-B and Helios Klinikum Berlin-Buch, Berlin (M.U.), the National Center for Tumor Diseases, Heidelberg University Hospital, and German Cancer Research Center, Heidelberg (A.S.), Evangelische Kliniken Gelsenkirchen, Gelsenkirchen (H.H.F.), Arbeitsgemeinschaft Gynäkologische Onkologie-Breast and Sana Klinikum Offenbach, Offenbach (C.J.), the Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen (P.A.F.), German Breast Group, Neu-Isenburg (P.W., S.L.), and the Center for Hematology and Oncology Bethanien, Goethe University, Frankfurt (S.L.) - all in Germany; National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (C.-S.H.); Instituto do Câncer do Estado de São Paulo, São Paulo (M.S.M.); Orlando Health Cancer Institute, Orlando, FL (E.P.M.); Hospital Universitario La Paz-Instituto de Investigación del Hospital Universitario La Paz, Madrid (A.R.); L'Institut du Cancer de Montpellier-Val d'Aurelle, Montpellier (V.D.), Institut Bergonié, INSERM Unité 1312, and Université de Bordeaux UFR Sciences Médicales, Bordeaux (H.R.B.) - all in France; Providence Cancer Institute, Portland, OR (A.K.C.); the Department of Surgery, Oncology, and Gastroenterology, University of Padua, and Oncology 2, Istituto Oncologico Veneto IRCCS, Padua (V.G.), and the Cancer Center Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo (E.R.C.) - all in Italy; Stanford University School of Medicine, Stanford, CA (I.L.W.); the National Cancer Institute, Mexico City (C.A.-S.); Yale University School of Medicine, Yale Cancer Center, and Smilow Cancer Hospital, New Haven, CT (M.P.D.); the All-Ireland Cooperative Oncology Research Group (J.P.C.), and the Oncology Unit, Cancer Clinical Trials and Research Unit, Beaumont RCSI Cancer Centre, and Cancer Trials Ireland (B.T.H.) - all in Dublin; Fudan University Shanghai Cancer Center, Shanghai, China (Z.S.); Institute for Oncology and Radiology of Serbia, Belgrade (L.S.); Grupo Médico Ángeles, Guatemala City, Guatemala (H.C.-S.); Roche Products, Welwyn Garden City, United Kingdom (A.K., A.S.); and F. Hoffmann-La Roche, Basel, Switzerland (C.L., T.B., B.N., E.R.).
Background: Patients with human epidermal growth factor receptor 2 (HER2)-positive early breast cancer with residual invasive disease after neoadjuvant systemic therapy have a high risk of recurrence and death. The primary analysis of KATHERINE, a phase 3, open-label trial, showed that the risk of invasive breast cancer or death was 50% lower with adjuvant trastuzumab emtansine (T-DM1) than with trastuzumab alone.
Methods: We randomly assigned patients with HER2-positive early breast cancer with residual invasive disease in the breast or axilla after neoadjuvant systemic treatment with taxane-based chemotherapy and trastuzumab to receive T-DM1 or trastuzumab for 14 cycles.
Neurology
February 2025
Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.
Background And Objectives: Previous studies have shown inconsistent associations between red meat intake and cognitive health. Our objective was to examine the association between red meat intake and multiple cognitive outcomes.
Methods: In this prospective cohort study, we included participants free of dementia at baseline from 2 nationwide cohort studies in the United States: the Nurses' Health Study (NHS) and the Health Professionals Follow-Up Study (HPFS).
Neurology
February 2025
Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada.
Pathogenic variants in cause congenital muscular dystrophy through hypoglycosylation of alpha-dystroglycan (OMIM #615350). The established phenotypic spectrum of GMPPB-related disorders includes recurrent rhabdomyolysis, limb-girdle muscular dystrophy, neuromuscular transmission abnormalities, and congenital muscular dystrophy with variable brain and eye anomalies. We report a 9-month-old male infant with congenital muscular dystrophy, infantile spasms, and compound heterozygous pathogenic variants (c.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!