Quantitative ultrasound (QUS) of bone is a valuable tool in the assessment of postmenopausal osteoporosis. QUS and new markers of bone turnover have been poorly assessed in Cushing's syndrome, however. Twenty-five patients with Cushing's syndrome (20 women, 3 men; mean age +/- SEM: 38+/-2 years) were studied and compared with 35 age- and sex-matched control patients (mean age +/- SEM: 38+/-2 years). The following variables were measured in both groups: QUS parameters at the heel (BUA; SOS; Stiffness Index, SI); bone mineral density (BMD) at both the lumbar spine (LS) and femoral neck (FN) by dual-energy X-ray absorptiometry; and serum markers of bone turnover (osteocalcin, procollagen type I N- and C-terminal propeptides (PINP and PICP), bone alkaline phosphatase (BAP), procollagen type I C-terminal telopeptide (ICTP) and urinary type I collagen C-telopepetide breakdown products (CTX)). Both BUA and SI were decreased in patients with Cushing's syndrome (p<0.01) but not SOS (p=0.08). BMD was also strongly decreased in Cushing's syndrome, at both the LS and FN (p<0.005). The two markers of bone turnover statistically significantly different between the two groups were osteocalcin (mean + SEM: 3.5 + 0.7 ng/ml (Cushing's syndrome) vs 6.4+/-0.5 ng/ml (controls, p<0.01)) and CTX (mean +/- SEM: 148.7+/-17.1 microg/mmol Cr (Cushing's syndrome) vs 220.8+/-22.9 microg/mmol Cr (controls), p<0.05). The areas under the receiver operating characteristic curve (AUC) were 0.72 (BUA), 0.73 (SI), 0.90 (BMD(LS)), 0.81 (BMD(FN)), 0.83 (osteocalcin) and 0.64 (CTX) respectively. AUC was significantly higher for BMD(LS) than for both BUA and SI (p<0.05). Conversely AUC was not statistically significantly different for BMDFN as compared with either BUA or SI. AUC was also higher for osteocalcin than for other markers of bone turnover. In conclusion, QUS of bone seems to be a relevant tool for assessing bone involvement in Cushing's syndrome. QUS does have a lower sensitivity compared with DXA, however, and the relevance of QUS cannot be ascertained until some longitudinal data are forthcoming. Except for CTX, the other new markers of bone turnover assessed in this study (PINP, PICP, BAP and ICTP) do not seem of interest in Cushing's syndrome.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s001980170143DOI Listing

Publication Analysis

Top Keywords

cushing's syndrome
16
markers bone
12
bone turnover
12
quantitative ultrasound
8
patients cushing's
8
age +/-
8
+/- sem
8
sem 38+/-2
8
38+/-2 years
8
procollagen type
8

Similar Publications

Purpose: To evaluate the effect of osilodrostat and hypercortisolism control on blood pressure (BP) and glycemic control in patients with Cushing's disease.

Methods: Pooled analysis of two Phase III osilodrostat studies (LINC 3 and LINC 4), both comprising a 48-week core phase and an optional open-label extension. Changes from baseline in systolic and diastolic BP (SBP and DBP), fasting plasma glucose (FPG), and glycated hemoglobin (HbA) were evaluated during osilodrostat treatment in patients with/without hypertension or diabetes at baseline.

View Article and Find Full Text PDF

Hypercalcemia Following Adrenalectomy for Cushing Syndrome in a Patient with Post-Surgical Hypoparathyroidism.

Diseases

January 2025

Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Fondazione Policlinico "A. Gemelli" IRCCS, Largo Gemelli 8, 00168 Rome, Italy.

Hypercalcemia is a frequently encountered laboratory finding in endocrinology, warranting accurate clinical and laboratory evaluation to identify its cause. While primary hyperparathyroidism and malignancies represent the most common causes, many other etiologies have been described, including some reports of hypercalcemia secondary to adrenal insufficiency. On the contrary, hypoparathyroidism is a relatively common cause of hypocalcemia, often arising as a complication of thyroid surgery.

View Article and Find Full Text PDF

Glucocorticoid resistance syndrome (GRS) is caused by inactivating pathogenic variants in the glucocorticoid receptor gene . Reduced glucocorticoid receptor signaling leads to decreased tissue sensitivity to cortisol and resultant biochemical hypercortisolism without the classic clinical features of Cushing syndrome. Patients variably present with signs and symptoms of mineralocorticoid and androgen excess from ACTH overstimulation of the adrenal cortex.

View Article and Find Full Text PDF

Elevated cortisol in chronic stress and mood disorders causes morbidity including metabolic and cardiovascular diseases. There is therefore interest in developing drugs that lower cortisol by targeting its endocrine pathway, the hypothalamic-pituitary-adrenal (HPA) axis. However, several promising HPA-modulating drugs have failed to reduce long-term cortisol in mood disorders, despite effectiveness in other hypercortisolism conditions such as Cushing's syndrome.

View Article and Find Full Text PDF

Cushing syndrome.

Nat Rev Dis Primers

January 2025

Endocrine Division, Department of Medicine, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, Québec, Canada.

Cushing syndrome (CS) is a constellation of signs and symptoms caused by excessive exposure to exogenous or endogenous glucocorticoid hormones. Endogenous CS is caused by increased cortisol production by one or both adrenal glands (adrenal CS) or by elevated adrenocorticotropic hormone (ACTH) secretion from a pituitary tumour (Cushing disease (CD)) or non-pituitary tumour (ectopic ACTH secretion), which stimulates excessive cortisol production. CS is associated with severe multisystem morbidity, including impaired cardiovascular and metabolic function, infections and neuropsychiatric disorders, which notably reduce quality of life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!