Malignant glioma in adults and primitive neuroectodermal tumors/medulloblastomas in children are the most common malignant primary brain tumors that either respond poorly to current treatment or tend to recur. Adoptive therapy with TALL-104 cells-an IL-2-dependent, major histocompatibility complex nonrestricted, cytotoxic T-cell line-has demonstrated significant antitumor activity against a broad range of implanted or spontaneously arising tumors. This study investigates distribution of systemically and locally administered TALL-104 cells and their efficacy in effecting survival of a rat model of human brain tumor. In vitro, TALL-104 cells showed significant cytotoxic activity when added to human glioblastoma cell lines U-87 MG, U-251 MG, and A1690; the medulloblastoma cell lines DAOY, D283 Med, and D341 Med; and the epidermoid cancer cell line A431. In brain tumor-bearing rats, the amount of fluorescent dye-labeled TALL-104 cells in brain increased after they were given by intracarotid injection as compared with i.v. cell administration. However, TALL-104 cells rapidly decreased to low levels within 1 h after intracarotid injection. This finding suggests that TALL-104 cells given systemically may not invade brain or tumor tissues, but rather may remain in the vascular system, making this approach less efficient for brain tumor treatment. In a model of athymic rats engrafted with human A431 carcinoma brain tumor, repetitive local administration of TALL-104 cells directly into the tumor bed resulted in a significant increase in survival time compared with control animals. Therefore, local therapy with TALL-104 cells may be a novel and highly effective treatment approach for malignant brain tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1919516 | PMC |
http://dx.doi.org/10.1093/neuonc/2.2.103 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!