Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We reported recently that the bloodstream form of the African trypanosome, Trypanosoma brucei, is sensitive to the anti-influenza virus drug rimantadine. In the present report we describe the trypanocidal properties of a further 62 aminoadamantane and aminoalkylcyclohexane derivatives. Seventeen of the compounds were found to be more active than rimantadine, with four inhibiting growth in vitro of T. brucei by >90% at concentrations of 1 microM. The most active derivative (1-adamantyl-4-amino-cyclohexane) was about 20 to 25 times more effective than rimantadine. We observed a correlation between structural features of the derivatives and their trypanocidal properties; hydrophobic substitutions to the adamantane or cyclohexane rings generally enhanced activity. As with rimantadine, the activity in vitro varied with the pH. T. brucei was more sensitive in an alkaline environment (including a normal bloodstream pH of 7.4) and less sensitive under acidic conditions. Tests for activity in vivo were carried out with a mouse model of infection with a virulent strain of T. brucei. Although the parasitemia was not eliminated, it could be transiently suppressed by >98% with the most active compounds tested. These results suggest that aminoadamantane derivatives could have potential as a new class of trypanocidal agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC90474 | PMC |
http://dx.doi.org/10.1128/AAC.45.5.1360-1366.2001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!