Temperature-dependent sex determination and gonadal differentiation in reptiles.

EXS

Institut Jacques Monod, CNRS, and Universités Paris 6 et Paris 7, 2 Place Jussieu, F-75251 Paris, 05, France.

Published: May 2001

In many reptile species, sexual differentiation of gonads is sensitive to temperature (temperature-dependent sex determination, TSD) during a critical period of embryonic development (thermosensitive period, TSP). Experiments carried out with different models including turtles, crocodilians and lizards have demonstrated the implication of estrogens and the key role played by aromatase (the enzyme complex that converts androgens to estrogens) in ovary differentiation during TSP and in maintenance of the ovarian structure after TSP. In some of these experiments, the occurrence of various degrees of gonadal intersexuality is related to weak differences in aromatase activity, suggesting subtle regulations of the aromatase gene at the transcription level. Temperature could intervene in these regulations. Studies presently under way deal with cloning (cDNAs) and expression (mRNAs) of genes that have been shown, or are expected, to be involved in gonadal formation and/or differentiation in mammals. Preliminary results show that homologues of the WT1, SF1, SOX9, DAX1 and AMH genes exist in TSD reptiles. However, the expression patterns of these genes during gonadal differentiation may be different between mammals and TSD reptiles and also between different reptile species. How these genes could interact with aromatase is being examined.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-0348-7781-7_7DOI Listing

Publication Analysis

Top Keywords

temperature-dependent sex
8
sex determination
8
gonadal differentiation
8
reptiles reptile
8
reptile species
8
tsp experiments
8
differentiation mammals
8
tsd reptiles
8
differentiation
5
gonadal
4

Similar Publications

Chromosome-level genome assembly and annotation of the gynogenetic large-scale loach (Paramisgurnus dabryanus).

Sci Data

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.

The large-scale loach (Paramisgurnus dabryanus; Cypriniformes: Cobitidae) is primarily distributed in East Asia. It is an important economic fish species characterized by fast growth, temperature-dependent sex determination and the ability to breathe air. Currently, molecular mechanism studies related to some aspects such as sex determination, toxicology, feed nutrition, growth and genetic evolution have been conducted.

View Article and Find Full Text PDF

The effects of warming on loggerhead turtle nesting counts.

J Anim Ecol

January 2025

Faculdade de Ciências da Universidade do Porto, Centro de Investigação em Ciências Geo-Espaciais (CICGE), Vila Nova de Gaia, Portugal.

Global trends in marine turtle nesting numbers vary by region, influenced by environmental or anthropogenic factors. Our study investigates the potential role of past temperature fluctuations on these trends, particularly whether warmer beaches are linked to increased nesting due to higher female production (since sea turtles have temperature-dependent sex determination). We selected the loggerhead turtle (Caretta caretta) due to its wide distribution, strong philopatry and vulnerability to environmental changes.

View Article and Find Full Text PDF

Characterizing how organisms respond to transient temperatures may further our understanding of their susceptibility to climate change. Past studies in the freshwater turtle, , have demonstrated that the timing and duration of heat waves can have major implications for the response of genes involved in gonadal development and the production of female hatchlings. Yet, no study has considered how the response of these genes to transient cold snap exposure may affect gonadal development and the production of males.

View Article and Find Full Text PDF

In species with genetic sex determination (GSD), the sex identity of the soma determines germ cell fate. For example, in mice, XY germ cells that enter an ovary differentiate as oogonia, whereas XX germ cells that enter a testis initiate differentiation as spermatogonia. However, numerous species lack a GSD system and instead display temperature-dependent sex determination (TSD).

View Article and Find Full Text PDF

Background: Extreme and inequitable heat exposures cause weather-related deaths. Associations between maximum daily temperature and individual-level healthcare utilization have been inadequately characterized.

Objective: To evaluate and compare demographic and clinical associations for an individual's healthcare utilization between high- and low-temperature periods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!