In vitro lipolysis stimulated by low (-)-isoprenaline concentrations (< or =30 nM) in epididymal white adipocytes from Sprague-Dawley rats was inhibited at least 60-80% by the specific beta1-antagonists LK 204-545 and CGP 20712A (1 microM), suggesting that at these low (10 nM) concentrations of (-)-isoprenaline lipolysis was primarily (80%) but not solely mediated via beta1-adrenergic receptors. Low concentrations (100 nM) of (-)-noradrenaline and formoterol also confirmed a role for beta1-adrenergic receptors in mediating lipolysis at low concentrations of these agonists. At higher agonist concentrations, beta3-adrenergic receptors were fully activated and were the dominant beta-adrenergic receptor subtype mediating the maximum lipolytic response, and the maximum response was not affected by the beta1-antagonists, demonstrating that the beta3-receptor is capable of inducing maximum lipolysis on its own. Studies of lipolysis induced by the relatively beta2-selective agonist formoterol in the presence of beta1-blockade (1 microM CGP 20712A) demonstrated the inability of the beta2-selective antagonist ICI 118-551 to inhibit the residual lipolysis at concentrations of ICI 118-551 < or = 1 microM. Higher concentrations of ICI 118-551 inhibited the residual formoterol-induced lipolysis competetively, but with low affinity (approximately 500-fold lower than its beta2-adrenergic receptor pA2, 7.80 +/- 0.21), suggesting that formoterol was not acting via beta2-adrenergic receptors. These data are consistent with beta1-adrenergic receptors playing an important role in lipolysis at physiological but not pharmacological concentrations of catecholamines and that beta2-adrenergic receptors play no obvious direct role in mediating beta-adrenergic receptor agonist-induced lipolysis in vitro. Finally, racemic-SR 59230A, unlike the pure (S, S)-isomer (a beta3-selective antagonist), was found to be a nonselective antagonist at the three beta-adrenergic receptor subtypes, showing that the other enantiomers have different selectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1007838125152 | DOI Listing |
J Clin Hypertens (Greenwich)
January 2025
CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
This study evaluated initial antihypertensive drug prescription patterns in Indian healthcare settings. An observational, cross-sectional, prospective prescription registry analyzed prescriptions for 4723 newly diagnosed hypertension patients. Additionally, it investigated the extent to which physicians adhered to either European or Indian hypertension guidelines.
View Article and Find Full Text PDFVet Med Sci
January 2025
Department of Biochemistry, Faculty of Veterinary Medicine, Erzurum, Turkey.
Background: Isoproterenol (ISO) is a nonselective beta-adrenergic receptor agonist known for its vasodilatory effects. This experiment aims to investigate whether intrauterine ISO administration could alter vascular indices and follicular development in postpartum Holstein cows.
Objectives: The objectives are to evaluate the effects of intrauterine ISO administration on vascular changes and its impact on follicular development compared to placebo groups.
J Comput Chem
January 2025
Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, CDMX, Mexico.
The G protein-coupled receptor (GPCR) pharmacology accounts for a significant field in research, clinical studies, and therapeutics. Computer-aided drug discovery is an evolving suite of techniques and methodologies that facilitate accelerated progress in drug discovery and repositioning. However, the structure-activity relationships of molecules targeting GPCRs are highly challenging in many cases since slight structural modifications can lead to drastic changes in biological functionality.
View Article and Find Full Text PDFThe immune system shapes body metabolism, while interactions between peripheral neurons and immune cells control tissue homeostasis and immunity. However, whether peripheral neuroimmune interactions orchestrate endocrine system functions remains unexplored. After fasting, mice lacking type 2 innate lymphoid cells (ILC2s) displayed disrupted glucose homeostasis, impaired pancreatic glucagon secretion, and inefficient hepatic gluconeogenesis.
View Article and Find Full Text PDFArch Med Res
January 2025
Programa de Investigación de Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico. Electronic address:
Na⁺/H⁺ exchanger regulatory factor 2 (NHERF2) is a nucleocytoplasmic protein initially identified as a regulator of membrane-bound sodium-hydrogen exchanger 3 (NHE3). In the cytoplasm, NHERF2 regulates the activity of G protein-coupled receptors (GPCRs), including beta-2 adrenergic receptor (2β-AR), lysophosphatidic acid receptor 2, and parathyroid hormone type 1 receptor. In the nucleus, NHERF2 acts as a coregulator of transcription factors such as sex-determining region Y protein (SRY), involved in male sex determination, and estrogen receptor alpha (ERα).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!