Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
No G(i)-linked P2Y receptors have been cloned to date but the presence of such receptors is thought to be restricted to platelets and certain clonal cell lines. Using the functional approach of [(35)S]guanosine 5'-[gamma-thio]-triphosphate autoradiography, we uncovered the widespread presence of such receptors in the CNS. Under conditions in which the prominent signal due to tonic adenosine receptor activity is masked, ADP and ATP stimulated G-protein activity in multiple grey and white matter regions. Localization in the grey matter suggests inhibitory auto-/heteroreceptor function. In the white matter, activated G proteins appeared as 'hot spots' (presumed oligodendrocyte progenitors) with scattered distribution along the main fibre tracts. Responses to ATP were diminished under conditions that inhibited degradation, suggesting that prior conversion to ADP explained agonist action. Uracil nucleotides were ineffective but 2-methylthio-ADP activated G proteins approximately 500-fold more potently than ADP, although both were similarly degraded. Throughout the brain, ADP-dependent G-protein activity was reversed by 2-hexylthio-AdoOC(O)Asp(2), a non-phosphate ATP analogue, whereas selective P2Y(1) receptor antagonists proved ineffective. A similar receptor was also disclosed from the adrenal medulla. These data witness a hitherto unrecognized abundance of G(i/o)-linked ADP receptors in the nervous system. Biochemical and pharmacological behaviour suggests striking similarities to the elusive platelet P2Y(ADP) receptor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1471-4159.2001.00265.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!